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Abstract. The recent increase in wildfire activity across the rangeland–xeric forest continuum in the western United
States has landscape-scale consequences in terms of runoff and erosion. Concomitant cheatgrass (Bromus tectorum L.)

invasions, plant community transitions and a warming climate in recent decades along grassland–shrubland–woodland–
xeric forest transitions have promoted frequent and large wildfires, and continuance of the trend appears likely if warming
climate conditions prevail. These changes potentially increase overall hydrologic vulnerability by spatially and temporally

increasing soil exposure to runoff and erosion processes. Plot and hillslope-scale studies demonstrate burning may
increase event runoff or erosion by factors of 2–40 over small-plot scales and more than 100-fold over large-plot to
hillslope scales. Reports of flooding and debris flow events from rangelands and xeric forests following burning show the
potential risk to natural resources, property, infrastructure and human life. We present a conceptual model for evaluating

post-fire hydrologic vulnerability and risk. We suggest that post-fire risk assessment of potential hydrologic hazards
should adopt a probability-based approach that considers varying site susceptibility in conjunction with a range of
potential storms and that determines the hydrologic response magnitudes likely to affect values-at-risk. Our review

suggests that improved risk assessment requires better understanding in several key areas including quantification of
interactions between varying storm intensities and measures of site susceptibility, the varying effects of soil water
repellency, and the spatial scaling of post-fire hydrologic response across rangeland–xeric forest plant communities.
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Introduction

Wildfire activity is increasing along the rangeland–xeric forest
continuumof the interior westernUnited States (US; Littell et al.
2009;Miller et al. 2009; Litschert et al. 2012; Balch et al. 2013).

A vast expanse of the western US is dominated by an arid to
semi-arid climate with less than 100-cm annual precipitation
(Fig. 1a) and vegetation that transitions from rangelands to

pinyon–juniper woodlands (Pinus spp., Juniperus spp.) or xeric
ponderosa pine (Pinus ponderosa Lawson &C. Lawson) forests
across low- to mid-elevations (Fig. 1b). Over the past decade,

more than 1� 106 ha of the western US were burnt by wildfire
annually, and much of this was along the rangeland–xeric
forest continuum (NIFC 2012). Periods of recurring high wild-
fire activity in the western US are not unprecedented in the

paleo-record (Pierce et al. 2004; Heyerdahl et al. 2008a, 2008b;

Whitlock et al. 2008, 2011; Marlon et al. 2012) but the fre-
quency of large fires (.400 ha) and annual area burnt have
increased in recent decades (Westerling et al. 2006; Keane et al.

2008;Morgan et al. 2008; Littell et al. 2009;Miller et al. 2011a).
Cheatgrass (Bromus tectorum L.) invasion is the primary

cause of increased fire frequency and annual area burnt on

sagebrush rangelands throughout the western US (Keane et al.
2008; Miller et al. 2011a; Balch et al. 2013). The species is now
a major plant constituent on 4� 106–7� 106 ha of sagebrush

rangelands in the Great Basin alone (Fig. 1b; Knapp 1996;
Bradley and Mustard 2005; Miller et al. 2011a). Cheatgrass
infill of areas between woody plants affects wildfire activity by
increasing the horizontal continuity of fuels and the likelihood
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Fig. 1. Map of annual precipitation (a) (Prism Climate Group 2012) and landcover (b) (USGS 2012) across the

western United States. The approximate geographic area of the study domain is delineated by the bold black line in

each map. The boundary of the Great Basin Desert (rangeland and woodland region with high wildfire activity) is

delineated with a dashed black line on the landcover map.
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of ignition (Fig. 2a; Brooks et al. 2004; Link et al. 2006; Davies

et al. 2012). Fire return intervals in cheatgrass-infested range-
lands are commonly 10-fold shorter than those for intact
sagebrush–bunchgrass communities (Miller et al. 2011a).

Frequent re-burning of cheatgrass-invaded rangelands promotes
a grass-fire cycle that in turn perpetuates cheatgrass dominance
(Knapp 1996; Brooks et al. 2004; Davies et al. 2012; Balch et al.

2013). Cheatgrass produces more seeds post-fire than do native
species (Humphrey and Schupp 2001) and commonly out-
competes native bunchgrasses for soil nutrients and water
(Harris 1967; Mack and Pyke 1983; Aguirre and Johnson

1991; Duke and Caldwell 2001). The higher seedling vigour
and reproduction potential of cheatgrass relative to other species
promote a decline in site species richness and evenness with

increasing cheatgrass coverage (Mack 1981; Melgoza and
Nowak 1991). Repeated fires over short rotations kill newly
established shrubs and perennial grasses, exhaust native seed

sources and propagate highly flammable cheatgrass monocul-
tures (Fig. 2b; Welch 2005; Davies et al. 2012).

Woodland expansion and infill on rangelands have made

much of the western US prone to large severe wildfires

(Keane et al. 2008; Romme et al. 2009). Native pinyon and
juniper species have dramatically increased their range in the
past 150 years and currently occupy more than 3.0� 107 ha of

the western US (Miller and Tausch 2001; Davies et al. 2011;
Miller et al. 2011a). Range expansion has primarily occurred
through encroachment into sagebrush communities (Fig. 3a).

Early-succession woodlands are now burning in large, high-
severity wildfires due to heavy woody-fuel loading and exten-
sive horizontal-to-vertical fuel connectivity (Fig. 3b; Miller and

Tausch 2001). Tree infill on late-successionwoodlands (Fig. 3c)
and extreme fire weather have increased the occurrence of large,
high-severity woodland fires in recent decades (Keane et al.

2008). Cheatgrass invasion into pinyon–juniper woodlands

(Fig. 3d) across the western US has amplified the risk of
large-scale fires associated with the annual grass-fire cycle
(Young and Evans 1978; Tausch 1999; Getz and Baker 2008;

Shinneman and Baker 2009). Historical wildfire regimes in
pinyon and juniper woodlands consisted of high-severity fires
every few hundred or more years (Baker and Shinneman 2004;

Romme et al. 2009). Therefore, severity of modern woodland
wildfires is within the historical range of variability, but the
relatively high frequency of large fires and annual area burnt on

woodlands in the past 20 years is likely unprecedented (Keane
et al. 2008).

Much of the interior westernUS now exists in a state inwhich
rangeland and woodland wildfires stimulated by cheatgrass and

dense fuels have a greater likelihood of progressing upslope into
xeric forests where fire activity is also increasing (Keane et al.
2008; Nelson and Pierce 2010; Balch et al. 2013). Wildfire

activity in western xeric forests is dictated by low fuel moisture
and cyclonic weather conducive to ignitions and fire spread
(Heyerdahl et al. 2002; Gedalof et al. 2005; Heyerdahl et al.

2008a; Morgan et al. 2008; Taylor et al. 2008; Whitlock et al.

2008; Miller et al. 2009). In recent decades, warmer winter and
spring air temperature trends at mid-elevations in the western
US have resulted in decreased snowpacks (Mote et al. 2005;

Regonda et al. 2005; Knowles et al. 2006; Trenberth et al. 2007;
Bonfils et al. 2008; Nayak et al. 2010), earlier spring snowmelt
and streamflow (McCabe and Clark 2005; Regonda et al. 2005;

Stewart et al. 2005; Pederson et al. 2011) and drier fuels
(Westerling et al. 2006). These shifts have lengthened fire
seasons and increased fire frequency and area burnt in western

forests (Pierce et al. 2004; Westerling et al. 2006; Morgan et al.
2008; Pierce and Meyer 2008; Littell et al. 2009).

Climate projections forecast geographic and elevation shifts

in fuels that influence fire activity and a persistence of current
fire trends along the rangeland–xeric forest continuum (Bradley
et al. 2009; Balch et al. 2013). Abatzoglou and Kolden (2011)
suggested cheatgrass invasibility and the length of the fire

season in the Great Basin will be enhanced by a warmer climate
and an increase in wet winters. Wisdom et al. (2003) estimated
at least 35% of Great Basin shrublands remain at high risk of

woodland encroachment, potentially pre-conditioning these
areas to extreme fire behaviour (Keane et al. 2008). Miller
and Tausch (2001) forecasted that land area covered by dense

woodlands and the occurrence of high severity woodland fires
will increase substantially in the next 40 or more years. Across
the interior west, cheatgrass is migrating upslope (Keeley and
McGinnis 2007; McGlone et al. 2009; Griffith and Loik 2010;

(a)

(b)

Fig. 2. Sagebrush rangeland with cheatgrass-infested interspace between

shrubs (a) and a burnt sagebrush site with nearly 100% cover of cheatgrass 1

year post-fire (b).
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Bromberg et al. 2011), potentially introducing the grass-fire
cycle at higher elevations and in xeric forests. Xeric forests

adjacent to grass-dominated hillslopes will likely undergo more
frequent burning than those distant from grass-dominated hill-
slopes (Gartner et al. 2012). Projections of climate and plant

community transitions are highly variable (Bradley 2009), but
most forecast warming, increased dry-season cyclonic storms,
longer fire seasons and greater wildfire activity across the

rangeland–xeric forest domain of the western US (Price and
Rind 1994; Flannigan et al. 2000; Whitlock et al. 2003; Brown
et al. 2004; Gedalof et al. 2005; Running 2006; Flannigan et al.
2009; Spracklen et al. 2009; Littell et al. 2010; Abatzoglou and

Kolden 2011).
Paleo-erosion records link periods of high wildfire activity in

thewesternUSwith flooding and increased erosion (Meyer et al.

1995, 2001; Meyer and Pierce 2003; Pierce et al. 2004; Pierce
andMeyer 2008; Pierce et al. 2011). In recent decades, extensive
damage to natural resources, property, and city infrastructures,

and loss of human life have been well documented for post-fire
flood events in the westernUS (Cannon et al. 2001a;Moody and
Martin 2001a; Klade 2006; Cannon et al. 2011). Our ability to
accurately forecast these effects and the potential hazards for

values-at-risk is limited with respect to current wildfire activity
(Miller et al. 2011b). Resource managers in the western US are

challenged with rapidly evaluating fire effects on ecosystems,
determining potential hazards to values-at-risk and conducting

cost-benefit analyses of mitigation options (Calkin et al. 2007;
Robichaud et al. 2010a). The capability of risk assessments to
accurately evaluate hazards and apportion mitigation expendi-

tures requires continued improvement in understanding fire
effects, development of predictive technologies, and transfer
of information and tools to resource managers (Robichaud et al.

2009; Robichaud and Ashmun 2013).
Current knowledge of fire effects on soils, runoff and

erosion is largely based on field studies of sagebrush range-
lands (Artemisia spp.; Pierson et al. 2001, 2002, 2008a, 2008b,

2009), semi-arid woodlands (Pierson et al. 2013;Williams et al.
2013), chaparral (see DeBano et al. 1998; Shakesby and Doerr
2006), forests (Robichaud et al. 2000; Benavides-Solorio and

MacDonald 2001, 2005; Larsen et al. 2009; Robichaud et al.

2010a, 2010b) and Mediterranean scrublands (Cerdà 1998;
Cerdà and Doerr 2005, 2008; Shakesby 2011). These studies

offer valuable insight into post-fire watershed response and
development of hydrologic risk assessment strategies associated
with increasing wildfire activity. In this paper, we review
current understanding of the hydrologic effects of increasing

wildfire activity across the rangeland–xeric forest continuum in
the interior western US (Fig. 1) and determine key knowledge

(a) (b)

(c) (d )

Fig. 3. Woodland encroachment on sagebrush rangeland (a); woodland burnt by high-severity wildfire (b); tree infill into persistent woodland (c) and

cheatgrass invasion of a burnt woodland (d).
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gaps for addressing the associated hazards to values-at-risk. Our
objectives are: (1) summarise current knowledge of wildfire
effects on soils, runoff and erosion; (2) frame current knowledge

in a conceptual model for increasing the understanding of fire-
induced hydrologic risk; and (3) identify the main knowledge
gaps that limit improvement of post-fire risk assessment for

increased wildfire activity.

Fire effects on soils, runoff and erosion

Water availability and surface soil conditions

The first-order effect of fire on runoff and erosion is decreased
interception. Unburnt shrubs and conifers can intercept as

much as 35% and 80% of rainfall during high and low intensity
storms , decreasingwater available for runoff and erosion (Rowe
1948; Hamilton and Rowe 1949; Skau 1964; Tromble 1983;

Owens et al. 2006). Rainfall interception by rangeland plants
can reduce erosivity of high-intensity rainfall by 50%, thereby
decreasing soil detachment by rain drops (Wainwright et al.

1999;Martinez-Mena et al. 2000). Numerous studies in forested
areas have found rainfall erosivity and its dissipation by cover
to be primary factors controlling post-fire erosion rates (Inbar

et al. 1998; Moody and Martin 2001b; Benavides-Solorio and
MacDonald 2005; Spigel and Robichaud 2007; Robichaud et al.
2008; Moody andMartin 2009; Robichaud et al. 2013a, 2013b).
Reduction of vegetation by fire may also result in less snow

accumulation and subsequent decreases in soil water recharge
and vegetation recovery. Spatial and temporal patterns of
snowaccumulation andmelt exert significant control on soilwater

input, vegetation recruitment and productivity, and hydrologic
processes in snow-dominated semi-arid landscapes (Flerchinger
et al. 1998; Flerchinger and Cooley 2000; McNamara et al. 2005;

Seyfried et al. 2009; Williams et al. 2009; Ebel et al. 2012a).
Dense shrub cover (2.2 plants m�2) can intercept and
store 37–61% of snowfall on rangelands (Hull 1972; Hull and
Klomp 1974). Reduced snow accumulation after fire may have

minor influence on soil water storage where seasonal snowmelt
input is substantial enough to return soils to field capacity
(Ebel et al. 2012a).

Hydrologically important soil properties are strongly influ-
enced by organic matter and soil fauna and microorganisms that
are altered to varying degrees by burning (Raison 1979; Certini

2005; Shakesby and Doerr 2006; Mataix-Solera et al. 2009,
2011). Soil organic matter is combusted at temperatures above
2008C and is completely consumed at 450–5008C (DeBano et al.

1998; Neary et al. 1999). These temperatures are well within the
range of those commonly reported for rangeland and xeric forest
soils during wildfire (Wright and Bailey 1982; Neary et al.

1999). The combustion of organic matter in soils can alter soil

structure, increase bulk density and decrease porosity and
infiltration capacity (Giovannini et al. 1988; Giovannini and
Lucchesi 1997; Hester et al. 1997; Pierson et al. 2001, 2002;

Hubbert et al. 2006; Stoof et al. 2010). Aggregate stability
promotes infiltration and soil resistance to erosion and may be
unaffected, reduced or increased by burning. Moderate- to high-

severity burning of soils stabilised by organic matter commonly
reduces aggregate stability through combustion of the binding
agent (Mataix-Solera et al. 2011). Some studies have found
an increase in aggregate stability after fire associated with

formation of hydrophobic soils (Mataix-Solera and Doerr
2004; Arcenegui et al. 2008; Jordán et al. 2011). Aggregate
stability of soils with high clay content may be enhanced by

high-severity burning due to thermal fusion of clay particles into
coarser particles (Giovannini et al. 1988; Giovannini and
Lucchesi 1997; Mataix-Solera et al. 2011). However, fusion

of clay to silt or sand particles can increase soil erosion due to the
loss of the cohesive properties inherent to clay soils (Badı́a and
Martı́ 2003; Hubbert et al. 2006). Burning may also reduce the

role of invertebrates, microorganisms, and fungal mycorrhizae
in facilitating soil aggregation and infiltration (DeBano et al.

1998; Shakesby and Doerr 2006; Mataix-Solera et al. 2009).
Soil temperatures of 40–2108C are fatal for most fungi and soil

organisms, and organic matter combustion and nutrient volati-
lisation at soil temperatures above 2008C reduce the primary
food source for soil fauna production (DeBano et al. 1998;

Neary et al. 1999; Certini 2005; Mataix-Solera et al. 2011).
Finally, soil moisture retention, a key component of plant and
soil fauna productivity, can also be adversely affected by

burning due to loss of soil organic matter, pore structure and
surface insulation by litter (DeBano et al. 1998; Stoof et al.
2010; Ebel 2012, 2013).

Soil heating may alter or create hydrophobic and/or hyper-
dry soil conditions (Krammes and DeBano 1965; DeBano and
Krammes 1966; Savage 1974; DeBano et al. 1998; Doerr et al.
2000; Hubbert et al. 2006; Pierson et al. 2008b; Doerr et al.

2009a; Moody et al. 2009; Pierson et al. 2009; Moody and Ebel
2012). During fires, organic matter combustion at the soil
surface radiates heats downward into the soil profile and

vaporises organic substances. Some of these substances are
translocated downward along temperature gradients until they
condense, forming a variable-thickness hydrophobic patch

(DeBano et al. 1970; Savage et al. 1972; Savage 1974; DeBano
et al. 1976; DeBano 2000; Doerr et al. 2004). Naturally occur-
ring or ‘background’ soil water repellency has been commonly
observed beneath unburnt conifers and shrubs (Lebron et al.

2007; Madsen et al. 2008; Pierson et al. 2008b; Doerr et al.
2009b; Pierson et al. 2009, 2010, 2013; Williams et al. 2013)
and is typically unaffected by soil temperatures ,1758C. Soil
temperatures of 175–2708C may enhance ‘background’ water
repellency or create hydrophobic soil conditions (Doerr et al.
2000, 2009a). Water repellency breaks down or is destroyed at

soil temperatures of 270–4008C (Savage et al. 1972; DeBano
et al. 1976; Giovannini and Lucchesi 1997; Doerr et al. 2004).
Fire-enhanced or -induced soil water repellency is commonly

found within a few centimetres of the soil surface and rapidly
decreases in strength with increasing soil depth (Doerr et al.
2009a). Repellency strength and its effect on runoff pre- and
post-fire is highly variable in space and time due to inherent

variability in pre-fire vegetation, soil properties and conditions,
and burn severity (Dekker et al. 2001; Huffman et al. 2001;
MacDonald and Huffman 2004; Woods et al. 2007; Pierson

et al. 2008b;Woods andBalfour 2008; Pierson et al. 2009, 2010;
Stoof et al. 2011; Bodı́ et al. 2013; Williams et al. 2013). The
effects of repellency on runoff generation are even more severe

under hyper-dry (extremely dry) conditions immediately fol-
lowing high-severity fire. Extreme heating during high-severity
fire can dry out small and large pores within the upper soil
profile, potentially causing partial pore structure collapse

Hydrologic and erosion responses to wildfire activity Int. J. Wildland Fire 159



(Moody et al. 2009; Moody and Ebel 2012). Hyper-dry condi-
tions require soils to be rewet before capillary and gravity-
driven infiltration can occur (Moody and Ebel 2012).

Runoff and erosion at the small-plot scale

Small plot (0.7� 0.7m) rainfall simulation studies by the

authors (see Table 1) on steeply sloped (35–60%) sagebrush
hillslopes demonstrate the effects of vegetation cover removal,
surface alteration and soil water repellency on post-fire runoff

and erosion from rangelands and woodlands. For example,
Pierson et al. (2002) investigated the hydrologic effects of
wildfire on north- and south-facing sagebrush hillslopes 1 year
after the Eighth Street Fire, near Boise, Idaho. Only the south-

facing hillslope results are presented here. Runoff and erosion
pre-fire were low from shrub coppices (areas beneath shrub
canopies) and interspaces (areas between shrub canopies) due

to rainfall interception by the canopy and litter and high surface
roughness (Table 1). Moderate- and high-severity burning
reduced vegetation and litter biomass by 75–99% and decreased

surface roughness by 40%. Approximately 30–50% of applied
rainfall post fire was lost to runoff over the nearly uniformly
bare surface (Table 1). Fire had a greater effect on erosion

than on runoff (Table 1) and severe burning increased soil ero-
sion 10-fold from coppices and 40-fold from interspaces
(Table 1). Higher runoff rates following fire were attributed to
decreased interception, persistence of pre-fire soil water repel-

lency, and reduced surface water detention following litter
removal and reduced surface roughness. Increased erosion fol-
lowing burning was attributed to greater raindrop detachment

and more efficient sediment transport, as well as increased
erodibility on interspace microsites.

A 3-year investigation by Pierson et al. (2001, 2008a, 2008b;

Table 1) measured infiltration, runoff, and erosion from rain-
splash and sheetflow following the Denio Fire, in Nevada. The
fire removed nearly all of the canopy and ground cover from
well-vegetated, steep sagebrush hillslopes. Runoff increased by

20% immediately following burning on shrub coppices but
decreased on interspaces by 40% (Table 1). The difference
between runoff on burnt and unburnt coppices was attributed

to the removal of canopy and ground cover by fire on strongly
water repellent soils. Decreased runoff from interspace areas
was associated with removal of water-shedding senescent vege-

tation (Pierson et al. 2001) and fire-reduced soil water repellen-
cy (Table 1). A decrease in soil water repellency by 50–60% on
all plots 1 year after fire was concurrent with a nearly 40%

increase in infiltration (Fig. 4a). A subsequent 40–50% increase
in soil water repellency on all plots 2 years after fire coincided
with a 5–15% decrease in infiltration (Fig. 4a; Pierson et al.

2008a, 2008b). Overall, canopy and ground cover removal

controlled water availability whereas the strength of soil water
repellency exerted greater influence on infiltration and runoff.
Interestingly, burning increased erosion from coppices 3-fold

but had no effect on interspace erosion (Table 1). The differing
responses were attributed to a more erodible surface and greater
runoff on coppices after burning. Erosion 1 year after fire was

greatly reduced on all plots and similar for burnt and unburnt
conditions. Two years after fire, burnt coppice plots generated
3–14 times more erosion than all other plots. Soil water
repellency and infiltrationwere the only other variables showing

the same temporal trend, implicating runoff and continued
increased erodibility as causal factors (Pierson et al. 2008a).

Pierson et al. (2008b, 2009; Table 1) measured infiltration,

runoff and erosion from small-plot rainfall simulations on burnt
and unburnt sagebrush hillslopes the year of, and 1 year follow-
ing, the Breaks Prescribed-Fire in the Reynolds Creek Experi-

mental Watershed, Idaho. The fire reduced canopy cover to
0–10% (Table 1) and litter cover to 36 and 14% for shrub
coppice and interspace plots. Runoff doubled on coppice plots

immediately after fire due to canopy and ground cover reduc-
tions, decreased surface roughness and strong post-fire soil
water repellency (Table 1). Burning of interspaces reduced
runoff (Table 1). One year after fire, a significant decrease

(by 70%) in soil water repellency on burnt and unburnt coppices
and nearly uniform slight soil water repellency across all plots
resulted in a 2-fold increase in infiltration (Fig. 4b). As in the

Pierson et al. (2008a) study (Table 1), cover influenced water
availability, but the strength of soil water repellency exerted a
greater influence on infiltration (Fig. 4b) and runoff of available

water. The fire had an even greater effect on erosion than on
runoff (Table 1). Reductions in canopy and ground cover
increased sediment yield 10-fold on coppices and 3-fold on

interspaces. Fire-induced increases in erosion on coppices were
attributed to greater runoff and erodibility after fire whereas
significantly increased erodibility alone explained the post-fire
erosion increase from interspaces (Pierson et al. 2009).

Benavides-Solorio and MacDonald (2001, 2002; Table 1)
measured runoff from burnt and unburnt areas of a ponderosa
pine forest in the Colorado Front Range, Colorado. Runoff

(Table 1) from plots burnt at high severity was well correlated
(R2¼ 0.81) with the strength of soil water repellency. Runoff was
not well correlated with percentage slope or bare ground. Bena-

vides-Solorio and MacDonald (2001) concluded that soil water
repellency and soilmoisture, as a controller of repellency strength,
were the primary controls on runoff. Percentage bare soil
explained 79% of erosion on all plots, and soil water repellency

explained 43% of the variability in erosion on plots burnt with
high-severity fire (Benavides-Solorio and MacDonald 2001).
Erosion on moderate- and high-severity burnt plots was 2 and 16

times greater than those onunburnt or low-severityplots (Table 1).
In a forest study, Woods and Balfour (2008) evaluated the

effects of ash on runoff from rainfall simulation plots 1 month

following high-severity wildfire. Rainfall was applied to 0.5-m2

plots at 75-mm h�1 intensity for 1 h. They found that ash
provided 15mm of water storage capacity and protected the

soil surface from sealing immediate after fire. Time-to-ponding
was 12min longer and cumulative infiltration was 20mm
greater on ash- than on ash-free plots. Nine months after the
fire, ash-covered and ash-free plots exhibited similar runoff

behaviour. Similar ash cover and runoff relationships have been
reported in studies by Cerdà and Doerr (2008), Larsen et al.

(2009), Woods and Balfour (2010) and Ebel et al. (2012b). Bodı́

et al. (2011) found that ash may alter soil wettability, inducing
surface soil water repellency when ash is hydrophobic and
reducing surface soil water repellency when ash is wettable. In

a laboratory rainfall simulation study, Bodı́ et al. (2012) found
that a saturated ash layer promoted runoff generation from
wettable soils and that an unsaturated ash layer of more than
5-mm depth protected the soil surface from rainsplash erosion
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and improved infiltration into water repellent soils by fingered

sub-surface flow. The study also found multiple rain events
altered physical and hydraulic properties of the ash layer and
reduced its effectiveness to buffer runoff generation and soil

erosion. Likewise, Larsen et al. (2009) indicated that the positive
effect of ash on infiltration is likely short-lived, and that soil
sealing following winnowing of ash particles may promote
runoff, especially onwater repellent soils (e.g. Onda et al. 2008).

Runoff and erosion processes at large-plot to hillslope scales

Large-plot scale effects of burning are generally greater for
erosion than for runoff due to a change from rainsplash–sheet-

flow to concentrated flow as the dominant process. Steep slope
angles on burnt hillslopes promote concentration of runoff

(Pietraszek 2006; Spigel and Robichaud 2007; Pierson et al.

2009; Al-Hamdan et al. 2012a, 2013). Concentrated flow has a
higher velocity than sheetflow and is therefore capable of

eroding and transporting more sediment. Pierson et al. (2009)
measured a 7-fold increase in runoff from 32.5m2 rainfall
simulation plots immediately following burning of steeply

sloped sagebrush rangeland (Table 1). Greater runoff under
burnt than unburnt conditions was attributed to a 3-fold ground
cover reduction, canopy removal, decreased surface roughness,

persistent soil water repellency and formation of high-velocity
concentrated flowpaths. Runoff returned to pre-fire levels
within one growing season due to a 3-fold reduction in strength

of soil water repellency and ground cover recovery to 40%.
Burning increased erosion more than 120-fold (Table 1, Fig. 5a)
as a result of high velocity concentrated flow and greater runoff
after fire. Cumulative runoff from consecutive 12-min releases

of 7, 12, 15 and 21 Lmin�1 of concentrated flow was 406L on
burnt plots immediately following fire and 144L on unburnt
plots. Mean erosion from concentrated flow experiments was

14 363 g on the burnt plots and 2420 g on unburnt plots (Pierson
et al. 2009). Concentrated flow velocities were 1.5–2.6 times
higher on burnt than on unburnt plots the year of the fire and

increased exponentially with increasing bare ground (Fig. 5b).
Erosion from artificial rainfall and simulated concentrated flow
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Fig. 4. Infiltration of simulated rainfall (85-mm-h�1 intensity) and

strength of soil water repellency (measured as water drop penetration time,

WDPT) on sagebrush rangeland in Nevada, USA (a) (Pierson et al. 2008a,

2008b) and Idaho, USA (b) (Pierson et al. 2009).
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on burnt hillslopes approached that of unburnt hillslopes once
ground cover recovered to near 60% (40% bare ground) two
growing seasons after fire (Fig. 5a).

Limited data are available for large-plot-scale runoff and
erosion from pinyon–juniper communities. Pierson et al. (2013)
and Williams et al. (2013) measured runoff and erosion from

13-m2 rainfall simulations in burnt and unburnt areas of a
western juniper (J. occidentalis Hook.) site 1 year after fire
(Table 1). Runoff from unburnt areas beneath junipers and from

the intercanopy area between trees was negligible (2–6mm) for
a 64mmh�1, 45-min duration storm on dry antecedent moisture
conditions. Runoff from the same storm applied to burnt tree
and intercanopy plots generated 17 and 4mm of runoff. The

study applied a higher intensity (102mmh�1, 45min) simulated
storm to all plots within ,30min of the simulation under dry
conditions (Table 1). Runoff was greater for the high intensity

storm, but the effects of burning on runoff were significant
only for tree plots. Runoff from tree plots was four times higher
for burnt than unburnt conditions and was equivalent to that of

the intercanopy (Table 1). Approximately 50% of rainfall
applied to burnt and unburnt intercanopy plots was converted
to runoff. Erosion was high from unburnt intercanopy plots

and increased 2-fold in the intercanopy after fire. Erosion
increased more than 20-fold on tree plots after fire (Table 1).
Williams et al. (2013) attributed the lack of fire effects on
runoff from intercanopy plots to the already high runoff rates.

Increased runoff and erosion following burning of tree plots was
attributed to fire removal of dense litter cover on water repellent
soils and formation of concentrated flow (Pierson et al. 2013;

Williams et al. 2013).
The effects of burning and storm intensity on large-plot-scale

runoff and erosion from semi-arid forests are well documented

(see Robichaud et al. 2000; Cerdà and Robichaud 2009; Moody
and Martin 2009). Johansen et al. (2001; Table 1) found that
runoff from rainfall simulations on burnt and unburnt areas of a
ponderosa pine site was positively correlated (r¼ 0.76) with

percentage bare soil, and that time to runoff was negatively
correlated (r¼ 0.67) with percentage bare soil. Burning
increased runoff and erosion 2- and 25-fold (Table 1). Soil

water repellency was highly variable spatially and had minimal
effect on runoff. Erosion was strongly correlated with percent-
age bare soil (r¼ 0.84). Wagenbrenner et al. (2006) found that

hillslope soil erosion (1900m2 plots) from burnt forests of the
Colorado Front Range returned to pre-fire levels once ground
cover increased to 60%. Benavides-Solorio and MacDonald

(2005) used silt fences (190–6600m2) to measure post-fire
erosion from forested slopes (25–45%) in the Colorado Front
Range over varying fire severities. Over the 2-year study,
percentage bare soil explained ,64% of the variability in soil

erosion (n¼ 48). Approximately 90% of the sediment collected
was delivered by high-intensity convective storms. Bare soil and
rainfall erosivity together explained 65% of sediment produc-

tion variability. Sediment yield decreased exponentially with
time after fire and was highest where bare soil approached and
exceeded 60%. Soil water repellency was weakly correlated

with sediment production from all plots (R2E 0.30), but was
more strongly correlated for the high-severity plots (R2E 0.40).
Concentrated flow played an important role in post-fire erosion
rates on converging topography (Benavides-Solorio and

MacDonald 2005). Spigel andRobichaud (2007) used silt fences
(,100-m2 contributing area) to measure erosion responses
from severely burnt, sloping (50–60% gradient) forest sites in

Montana. They concluded that rainfall intensity was the domi-
nant control on erosion from individual storms. More than
2000 gm�2 of soil was eroded during short-duration, high-

intensity storms (75-mmh�1 intensity, at least 10-min duration)
on sites with 60–90%bare soil andwater-repellent soils. Ground
cover and soil conditions influenced responses for low-intensity

storms, but storms exceeding ,70-mmh�1 intensity over 10-
min intervals led to substantial erosion regardless of site condi-
tions. Spigel and Robichaud (2007) observed prominent, dense
rill or concentrated flow networks during high intensity storms.

Runoff and erosion at hillslope to watershed scales

Flooding and extensive soil erosion are common where high-

intensity storms occur over large areas of recently burnt, sloping
terrain along the rangeland–xeric forest continuum (Craddock
1946; Cannon 2001; Cannon et al. 1998, 2001a, 2001b; Meyer

et al. 2001;Moody andMartin 2001a; Pierson et al. 2002; Pierce
et al. 2004; Klade 2006; Cannon et al. 2008; Pierce et al. 2011).
Large erosion events following wildfires are typically triggered

by runoff and progressive sediment bulking (Cannon et al.

2001a). For example, a torrential rainstorm 2 months after the
South Canyon Fire in Colorado caused nearly 90 runoff-
triggered debris-flow events that inundated a 13–14-ha areawith

,70 000m3 of soil (Cannon et al. 1998, 2001a). The fire
occurred on steep (30–70%) pinyon–juniper and shrub-domi-
nated hillslopes. Increased runoff and erosion from rainsplash

and sheetflow on bare soils facilitated formation of concen-
trated-flow networks and gullies with high erosive energy and
sediment transport capacity. Debris flows developed during the

storm mainly through bulking as the flows moved downslope,
entrained material and converged in drainage channels with
accumulations of wind-blown sediment. Flow velocities were
estimated at 3–9m s�1 (Cannon et al. 1998). Pierson et al.

(2002) documented a runoff-triggered response to a short-
duration high-intensity storm on steep sagebrush hillslopes
1 year after the 1996 Eighth Street Fire (6070 ha) along the

Boise Front Range, Idaho. A 5–10-year return-interval storm
(67mmh�1) lasting 9min generated concentrated flow net-
works, flash flooding and mudflows from bare (90–100%

bare ground), water-repellent soils with reduced water storage
capacity and low surface roughness. In an adjacent basin on
the Boise Front, similar conditions immediately following

multiple cheatgrass-fuelled wildfires in 1959 resulted in wide-
spread flooding and extensive property damage (Klade 2006).
Meyer et al. (2001) reported that a short-duration, high-intensity
storm on severely burnt ponderosa pine hillslopes in Idaho

generated runoff-triggered debris flows. They found incised
concentrated flow paths on the steeply sloping terrain integrated
into gullies more than 1m deep. The gullies promoted high-

velocity, erosive discharge that generated sediment-laden flows
reaching the North Fork Boise River. Debris flows on burnt
hillslopes can also be initiated by debris slides or shallow

landslides of large masses of saturated sediment (Meyer et al.
2001; Meyer and Pierce 2003; Wondzell and King 2003; Pierce
et al. 2004; Parise and Cannon 2012). Debris slides are most
common 4 years ormore following burning of forested areas due
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largely to declining root strength of dead trees (Meyer et al.
2001; Meyer and Pierce 2003). The studies described above
clearly demonstrate that plot- to hillslope-scale effects poten-

tially influence hydrologic and erosional responses to intense
rainfall over contiguous burnt terrain.

Hydrologic risks associated with altered fire regimes

Clearly, increased wildfire activity along the rangeland–xeric
continuumposes significant environmental, social and economic

consequences associated with flooding and erosion. More fre-
quent and larger fires increase the likelihood and potential
magnitude of onsite and offsite effects. More frequent exposure,
as a result of burning surface cover, subjects the soil surface to

repeated erosion from frequently occurring storms and increases
the probability that the soil surface will be exposed when less-
frequent, high-intensity rainfall events occur. Larger fires create

more extensive surface exposure. Annual soil loss from burnt
hillslopes in sloping terrain can be 60–100Mgha�1 the first year
following fire and may take 4–7 years to return to background

levels (Mayor et al. 2007; Robichaud 2009). Such losses are
detrimental if repeated on 5–10-year rotations. Loss of biologi-
cally important surface soils may be particularly critical for

rangelandswhere soil formation takes decades (Allen et al.2011;
Sankey et al. 2012), especially where large fires are followed by
drought years with minimal plant recruitment. Soils transported
into sideslopes and hollows onsite may serve as a source for

downstream sediment pulses during subsequent high-intensity,
channel-flushing events (Cannon et al. 2001a; Meyer and Pierce
2003; Pierce et al. 2004; Robichaud et al. 2013b) that negatively

affect water resources, fisheries and channel geomorphology
(Minshall et al. 2001; Pierce et al. 2011). Studies by Meyer and
Pierce (2003), Pierce et al. (2004) and Pierce and Meyer (2008)

found that large debris flow events in the interior western US are
linked to warm climatic conditions (Medieval Warm Period,
1050–750 years ago) associated with large, stand-replacing fires
in xeric forests. The studies further showed that recent warming

trends in western xeric forests are concomitant with occurrences
of large wildland fires and post-fire debris flows. Large fire-
induced debris flows are capable of transporting tremendous

volumes of sediment and debris into main stem rivers (Cannon
et al. 2001a; Meyer et al. 2001; Pierce et al. 2011).

The recent increase in frequent, large wildfires is particularly

concerning for communities in the wildland–urban interface.
Flooding in these areas presents hazards to property, infrastruc-
ture and human life. In 1945, flooding following intense rainfall

over a 1-year-old 300þ-ha cheatgrass burn caused more than
US$6 million (2013 values) in damage to property in Salt Lake
City, Utah (Craddock 1946). Multiple post-fire flooding events
in the 1950s and 1990s along the Boise Front Range caused

damage to property and infrastructure in the Boise metropolitan
area of Idaho exceeding a value of US$4 million at 2013 rates
(Klade 2006). Moody and Martin (2001b) evaluated the hydro-

logic response to a 100-year rainfall event on the 4690-ha
Buffalo Creek Fire in steep, forested watersheds of the Colorado
Front Range nearDenver, Colorado. Twomonths following fire,

a high-intensity (90mmh�1, 1 h) rainstorm caused flash flood-
ing that killed two people and discharged enough sediment into
the Strontia Springs Reservoir to reduce storage capacity by
one-third (Agnew et al. 1997; Moody and Martin 2001a).

Cannon et al. (2001a) reported debris flows from a high-
intensity storm on burnt rangelands in Colorado, which engulfed
30 vehicles travelling on a flow-intersected highway and forced

two people into the Colorado River. In Arizona, a 24-mm h�1,
10-min storm caused widespread flooding on a recently burnt
ponderosa pine site (Neary et al. 2012). The event flooded 85

homes, caused one death and substantially damaged city infra-
structure. Post-fire mitigation expenditures exceeded US$14
million (Coconino County 2011).

Post-fire hillslope hydrologic vulnerability can be concep-
tualised as a function of storm magnitude (i.e. rainfall intensity)
and site susceptibility (Fig. 6). In this model, storm-specific
hydrologic vulnerability represents potential runoff and erosion

responses for different site susceptibilities. Site susceptibility is
defined by the conditions of the soil surface, cover character-
istics and topography, and, therefore, encompasses burn severity

as well as other key inherent site characteristics (e.g. slope, rock
cover, soil erodibility) that influence hydrologic and erosion
responses. For a storm of uniform intensity, hydrologic response

increases exponentially with increases in site susceptibility due
to a shift in hydrologic process dominance from rainsplash and
sheetflow to concentrated flow (Fig. 6). Overall hydrologic

vulnerability or response increases with increasing storm intensi-
ty due to amplified rainfall erosivity and greater water input with
higher rainfall intensity. Fire removal of cover and decreased
surface roughness increase water available for runoff over point-

to small-plot scales and facilitate formation of concentrated flow
paths over larger spatial scales. Runoff generation is enhanced
where infiltration is inhibited by water-repellent soil conditions

and on steep slopes. Fire-induced increases in erodibility and
decreased surface protection against rainsplash facilitate soil
detachment at small scales and promote sediment delivery by

sheetflow and concentrated flow paths over larger spatial scales.
Increased erosionwith increasing land area results from sediment
bulking of the flow as it moves downslope, potentially causing
mudslides or debris flows (Cannon et al. 1998, 2001a).

Our qualitative model (Fig. 6) potentially presents a frame-
work with which future quantitative advancements in risk
assessment may be made. Kaplan and Garrick (1981) suggested

risk, R, be defined based on a set of triplets,

R ¼ fosi; pi; xi4g; i ¼ 1; 2; . . . n ð1Þ

where si refers to the ith scenario or set of conditions, pi is the
probability of the ith scenario occurring, and xi is the conse-

quence of the ith scenario. Risk is quantified under this structure
by tabulating triplets for all potential scenarios and computing a
cumulative probability curve. Site susceptibility and storm
intensity (or return interval) in our model of hydrologic vulner-

ability (Fig. 6) define the ith scenario (si), resulting in the ith
hydrologic response or consequence (xi). Vulnerability curves
shown for the respective storm intensities in Fig. 6 can be

thought of as a family of risk curves (Kaplan and Garrick
1981). The probability of the ith occurrence (pi) and hydrologic
response (xi) is the combined probability of susceptibility and

storm occurrence that define the ith scenario. The potential for
damages to values-at-risk is associated with the magnitude of
the hydrologic response (xi), shown by vulnerability curves in
Fig. 6, and those damages can be considered as secondary
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consequences resulting from the xi hydrologic response. Of
course, assessing potential harm to values-at-risk requires

knowledge of the storm and/or runoff magnitudes necessary to
cause the respective damage (for example, see Cannon et al.

2008, 2011). Clearly, such damages occur on western US land-

scapes (Cannon et al. 1998, 2001a; Meyer et al. 2001; Moody
and Martin 2001a; Pierson et al. 2002; Klade 2006; Cannon
et al. 2008) and their occurrences will likely be amplified by

ongoing increases in wildfire activity. We propose that recent
advances in understanding and quantification of fire effects
from small-plot to hillslope scales provide an initial point for
populating fire effects models in a probabilistic framework that

incorporates probabilities of site susceptibility, storm occur-
rence and magnitude of hydrologic response (e.g. Robichaud
et al. 2007; Cannon et al. 2010). The Erosion Risk Management

Tool (Robichaud et al. 2007) is one model that, in part, utilises
the above conceptual framework to predict hillslope-scale soil
erosion in probabilistic terms based on site-specific climate,

vegetation, soil texture, burn severity and topography.

Knowledge gaps in the assessment
of post-fire hydrologic risk

This review of post-fire hydrology and erosion studies offers
insight into potential confounding issues in the field interpre-
tation of post-fire hydrologic vulnerability. The studies

reviewed from burnt rangelands and forested sites (Table 1)
demonstrate that field assessments may be challenged by

spatial and temporal variability in fire effects and post-fire site
conditions, and inherent differences in recovery rates for runoff
v. erosion. For example, Pierson et al. (2002) found that runoff

and erosion on burnt sagebrush rangeland was significantly
greater on south-facing than on north-facing slopes 1 year fol-
lowing wildfire. Overland flow generated on south-facing

slopes during a convective thunderstorm caused intense flash
flooding. Assessment of north-facing slopes alone would not
have detected the potential storm response. Runoff and erosional
responses may also exhibit temporal variation that masks fire

effects. Annual variation in climate influences vegetative
recovery, litter recruitment, soil erodibility and soil water
repellency. Pierson et al. (2008a, 2008b, 2009) reported that

temporal variability in naturally occurring (not fire-induced)
soil water repellency on burnt sagebrush sites exerted greater
influence on runoff than did direct fire effects. Pierson et al.

(2009) observed that soil erosion from burnt sagebrush coppices
exhibited significant temporal variability, but it was not deter-
mined whether this resulted from differences in infiltration,

runoff or erodibility. Finally, the conditions required for hydro-
logic stability differ for runoff v. erosion, and for rainsplash–
sheetflow processes v. concentrated flow (Pierson et al. 2008a;
2009). Pierson et al. (2008a, 2009) and Benavides-Solorio
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and MacDonald (2001, 2002) have shown that fire effects are
greater with respect to erosion than to runoff. Our review of field
studies on fire effects indicates that post-fire assessments

focusing on one aspect of hydrologic vulnerability (e.g. runoff)
or on one process (e.g. rainsplash)may not accurately reflect fire
effects. Meaningful field studies of landscape-scale effects may

require multiple year assessments, annual control treatments
and field evaluation of runoff and erosion at different scales,
and should include assessment of rainsplash, sheetflow and

concentrated flow processes. However, such comprehensive
studies are seldom possible or practical. Investigations that
focus on a single hydrologic parameter or process at only one
scale should therefore acknowledge the potential errors asso-

ciated with broad-scale inferences on overall hydrologic
vulnerability.

The qualitative model presented in this study (Fig. 6) illus-

trates the general hydrologic and erosional relationships affect-
ed by ongoing plant community transitions and increased fire
activity in the western US, but our current ability to populate the

model relating to this problem is confounded by several key
issues. First, we are still learning how the variables that define
site susceptibility at different spatial scales interact to influence

hydrologic and erosion responses. Second, current understand-
ing is inadequate with regards to quantifying effects of within-
storm varying rainfall intensity and site conditions. Third,
knowledge of how to incorporate soil water repellency and

its inherent variability in space and time into predictive
models is particularly limiting. Fourth, runoff and erosion data
are extremely scant for many plant communities. Finally,

advancements in predictive erosion models have been made
(e.g. Robichaud et al. 2007; Nearing et al. 2011; Wagenbrenner
et al. 2010; Al-Hamdan et al. 2012b), but most models remain

focused at the hillslope scale given the lack of watershed-scale
data sources. Spatial scaling of hydrologic and erosion processes
has long been difficult for scientists, which remains a problem
for landscape-scale modelling. Scaling limitations further

inhibit linkages of plot- and hillslope-scale responses to offsite
effects on values-at-risk (Cawson et al. 2012). Nevertheless,
current models based on plot-to-hillslope scale knowledge

provide a means of predicting post-fire hillslope responses and
evaluating mitigation efforts.

Summary and conclusions

Increased wildfire activity associated with cheatgrass invasions,

plant community transitions and a warming climate along the
rangeland-xeric forest continuum in the western US poses
hydrologic risks to natural resources, property and human life.
Large and frequent fires promote loss of biologically important

soils and increase the likelihood of damaging flood and mass
erosion events. Projections of climate warming suggest that
current trends towards an increase in wildfire activity are likely

to continue. Future climate scenarios also predict large-scale
shifts in plant communities that may further enhance wildfire
activity in the rangeland–xeric forest continuum. Field studies

of post-fire runoff and erosion have advanced our understanding
of key physical processes and have contributed to hydrologic
and erosion model development. In our review, we present a
conceptual model of post-fire hydrologic vulnerability and risk

based on current understanding, and we identify remaining
knowledge gaps that limit post-fire risk assessment. We found
that current understanding is lacking in several key areas with

regard to quantitative modelling of post-fire hydrologic
responses and effects on values-at-risk. Current knowledge is
particularly deficient regarding the interacting effects of

hydrologic variables (i.e. varying rainfall intensity, infiltration,
runoff generation) and spatially variable post-burn conditions
and topography. Knowledge of how to incorporate soil water

repellency and its variability into hydrologic models is critically
limited. Finally, most physically based models are designed to
simulate hillslope-scale responses and are not directly applica-
ble to current landscape-scale fires extending across diverse

watersheds with steeply sloping xeric forest and rangeland plant
communities. Our review suggests that future post-fire risk
research should focus on advancing understanding in the key

areas noted above and on probability-based modelling of the
interacting controls on post-fire responses across relevant spa-
tial scales and for changing climate conditions.
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woodlands in the western United States: a review. Forest Ecology and

Management 189, 1–21. doi:10.1016/J.FORECO.2003.09.006

Balch JK, Bradley BA, D’Antonio CM, Gomez-Dans J (2013) Introd-

uced annual grass increases regional fire activity across the arid

western USA (1980–2009). Global Change Biology 19, 173–183.

doi:10.1111/GCB.12046

Benavides-Solorio J, MacDonald LH (2001) Post-fire runoff and erosion

from simulated rainfall on small plots, Colorado Front Range. Hydro-

logical Processes 15, 2931–2952. doi:10.1002/HYP.383

Benavides-Solorio J, MacDonald LH (2002) Erratum. Post-fire runoff and

erosion from simulated rainfall on small plots, Colorado Front Range.

Hydrological Processes 16, 1131–1133.

Benavides-Solorio JDD, MacDonald LH (2005) Measurement and predic-

tion of post-fire erosion at the hillslope scale, Colorado Front Range.

International Journal of Wildland Fire 14, 457–474. doi:10.1071/

WF05042

Bisdom EBA, Dekker LW, Schoute JFT (1993) Water repellency of sieve

fractions from sandy soils and relationshipswith organic material and soil

structure. Geoderma 56, 105–118. doi:10.1016/0016-7061(93)90103-R

Bodı́ MB, Mataix-Solera J, Doerr SH, Cerdà A (2011) The wettability of
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