How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area? Insights from airborne-LiDAR change detection

Jon D. Pelletier* and Caitlin A. Orem
Department of Geosciences, University of Arizona, Tucson, AZ, USA

ABSTRACT: We derived a high-resolution, spatially continuous map of erosion and deposition associated with the debris-laden flows triggered by the 2011 Las Conchas wildfire and subsequent rainstorms over a 197 km² area in New Mexico, USA. This map was produced using airborne-LiDAR-derived bare-earth digital elevation models (DEMs) acquired approximately one year before and one year after the wildfire. Differencing of the pre-wildfire and post-wildfire-and-rainstorm bare-earth DEMs yielded a DEM-of-difference (DoD) map that quantifies the magnitude of ground-surface elevation changes due to erosion/deposition within each 1 m² pixel. We applied a 0.3 m threshold filter to our DoD to remove changes that could have been due to artifacts and/or imperfect georeferencing. The 0.3 m value for the threshold filter was chosen based on the stated accuracy of the LiDAR as well as a comparison of areas of significant topographic change mapped in aerial photographs with those predicted using a range of candidate threshold values for the DoD filter. We developed an automated procedure that accepts the DoD map as input and computes, for every pixel in the DEM, the net sediment volume exported through each pixel by colluvial and/or fluvial processes using a digital routing algorithm. An analysis of the resulting sediment volume map for the Las Conchas fire demonstrates that sediment volume is proportional to upstream contributing area. After normalized by contributing area, the average sediment yield (defined as the sediment volume divided by the contributing area) increases as a power-law function of the average terrain slope and soil burn severity class (SBSC) with exponents equal to approximately 1.5. Our analysis quantifies the relationships among sediment yield, average terrain slope, and average soil burn severity class at the watershed scale and should prove useful for predicting the geomorphic response of wildfire-affected drainage basins. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS: post-wildfire erosion; LiDAR; Valles Caldera

Introduction and Motivation

Recent intense droughts and a century of wildfire suppression are driving record-setting large-area and high-severity wildfires across western North American forests (Keane et al., 2002; Westerling et al., 2006; Miller et al., 2009) and the world (Allen et al., 2010). Climate models agree that warming and the associated increase in potential evapotranspiration will result in more negative water balances in many semi-arid regions, further increasing the potential for enhanced wildfire frequency and severity in the future (Williams et al., 2010). In order to accurately assess potential soil loss, hazards to infrastructure, and impacts to water quality associated with this increase in wildfire activity, methods that accurately predict and measure post-wildfire sediment yields are urgently needed (Loomis et al., 2003; Cannon et al., 2010; Rhoades et al., 2011).

In June and July, 2011, 630 km² of the Jemez Mountains region was burned by the Las Conchas wildfire, then the largest wildfire in New Mexico state history. The fire and subsequent monsoon-season thunderstorms resulted in extreme hydro-geomorphic changes. Prior to the fire, some piedmonts had no active channels and were entirely grass-covered (Figure 1A). A single thunderstorm on August 3, 2011 formed a ~1 km-long, gravel-dominated distributary-channel system that transported boulders up to 1 m in diameter (Figure 1B). Many drainage basins in the burned area responded similarly, if not all as dramatically, to the fire and subsequent rainstorm events. Given the extreme hydro-geomorphic changes observed after the wildfire and subsequent rainstorms in addition to the availability of high-quality airborne LiDAR (light detection and ranging) data acquired before the wildfire, the Las Conchas event provides an excellent opportunity to test the ability of repeat airborne LiDAR data to quantify the geomorphic response to wildfire and subsequent rainstorms.

The purpose of this paper is to assess the ability of airborne laser swath mapping (ALSM) acquired before and after a wildfire and subsequent rainstorms to map erosion/deposition and sediment yields in a spatially continuous manner and at high
resolution over a large area (i.e. ~100 km²). Before evaluating the potential of this method, it is appropriate to identify the standard method(s) now used for quantifying post-fire erosion/deposition and sediment yields. One standard method for quantifying erosion/deposition and the volume of sediment exported from drainage basins associated with post-wildfire erosion is to survey cross-sectional profiles following the wildfire and subsequent rainstorms and, assuming that a V-shaped cross-section (or some other appropriate shape based on the cross-sectional shape of nearby un-incised valley bottoms) existed prior to the wildfire, project the gradients of the valley-bottom-bounding hillslopes into the eroded valley bottom to construct a V-shaped pre-event valley-bottom cross-section. This assumed pre-event cross-section is used, in conjunction with the measured post-event cross-section, to estimate the change in cross-sectional area at multiple locations along longitudinal profiles (Gartner et al., 2008; Cannon et al., 2010). This technique assumes that the volumes of material scoured from valley bottoms within a drainage basin can be summed to estimate the volume of sediment emanating from those drainage basins. Sediment volumes estimated in this way can be divided by the contributing area of the drainage basin to estimate a sediment yield (defined as the exported sediment volume per unit area per unit time) associated with post-fire erosion. This method has provided valuable information but it has limitations. First, uncertainty is introduced by assuming the shape of the pre-wildfire cross-section and considering scour only (i.e. neglecting deposition) in estimating the volume of sediment emanating from those drainage basins. Second, field-based survey methods cannot provide a high-resolution, spatially continuous map of post-wildfire sediment yields over a large area. We also propose and evaluate a new raster-based method for computing the volume of sediment exported for drainage basins based on a digital elevation model (DEM)-of-difference (DoD) map obtained by differencing of pre- and post-event LiDAR data.

Study Site Description and Post-wildfire Field Observations

Our study area includes the portion of the Las Conchas burned area within the Valles Caldera National Preserve (VCNP) and a portion of the adjacent Bandelier National Monument (Figure 2A) within the Jemez Mountains region. The VCNP is located at the site of a caldera formed 1.25 Ma (Figure 2) (Goff et al., 2006). Elevations range from 2300 m in the lower grasslands to 3432 m at the summit of the Redondo Peak resurgent dome. Parent material at the site is mostly rhyolite with some sedimentary and volcaniclastic deposits (Goff et al., 2006). The climate and vegetation of the study site were summarized by Condon (2013), and we summarize her major points here. The study site is semi-arid and seasonally snow-covered. Typically about half of the annual precipitation falls as snow between October and April and the remainder falls during the late summer as rainfall associated with the North American monsoon system (Bowen, 1996). Mean annual temperatures are approximately 3°C. A SNOTEL site 5 km from Redondo Peak averages approximately 750 mm annual precipitation at an elevation of 2794 m (NRCS 2013). At the highest elevations of the study area the forest is comprised of Engelmann spruce (Picea engelmannii) and corkbark fir (Abies lasiocarpa var. arizonica)
The Las Conchas wildfire is one of several large-area and high-severity wildfires to have burned the study site over the last couple of decades. Dendrochronology studies in VCNP have documented a shift in the fire regime from frequent, low-severity wildfires before 1900 to larger, high-severity fires post-1900 (Dewar, 2011). Large, stand-replacing, high-severity fires have become more common in the modern (post-1900) era with recurrence intervals estimated to be on the order of hundreds of years (Touchan et al., 1996). Rilling was the most common form of hillslope erosion we observed in areas burned at moderate and high soil burn severity class following the Las Conchas wildfire and subsequent rainstorms (Figure 3). Here we use the term rill to refer to any incision that occurs on a hillslope or hollow (i.e. portions of the landscape that are divergent, planar, or weakly convergent and that were unincised prior to the wildfire). Rills of approximately 0.5 m depth are common in areas burned at moderate to high severity (Figure 3A), with some rills exceeding 1.5 m depth (Figure 3B). Evidence also exists for thin but widespread hillslope stripping of the uppermost organic-rich layer of the soil together with the litter and duff that had accumulated on top of the soil. In such areas colluvial clasts armor the surface.

Material excavated from hillslopes can be transported in flow events that occur along a continuum from water-dominated floods to debris flows. We made detailed observations of debris-flow-dominated deposits in two drainage basins and their associated piedmonts located on the south side of Cerro del Medio in VCNP (Figure 2A). These deposits can be associated with debris flows based on their poorly sorted, unstratified, and matrix-supported nature as well as the presence of levees (Figure 4; Costa, 1984; Pierson, 2005). Deposit types in the upstream drainage basin varied from small (<1 m in height) levees on the edges of the main incised channel to large (>1 m in height) debris dams behind trees (Figure 4). Clasts within the debris-flow deposits were angular to subangular and very poorly sorted. Clasts on the levees are moderately to very poorly sorted based on Trask sorting coefficients (Trask, 1932) that were everywhere greater than 1.4 and an average of 3.8. The largest clasts within these deposits are approximately 2 m in diameter. The fine-grained matrix found between the clasts included clay to gravel-sized grains and was poorly sorted. Induration of the fine-grained matrix varied throughout the deposits and included loose sand-sized material to indurated silt and clay with small litter particles. Litter ranging in size from pine needles to full trees was commonly intermixed in the debris-flow deposits.

In the two Cerro del Medio drainage basins and their adjacent piedmonts, deposits associated with flood and hyperconcentrated flows (i.e. moderately well-sorted and stratified deposits, with imbrication present) also occur, especially near the margins of the flows (Figure 5). Figure 5 shows transects of elevation and grain size across the two piedmonts that include debris-flow and hyperconcentrated-flow deposits. Areas of higher elevation that are also convex in shape correspond with debris-flow levees identified in the field. Also shown in Figure 5 are the average and standard deviation of clast intermediate-axis diameters obtained by measuring 10 clasts at each location along the transect. Levee deposits had larger grain sizes and higher standard deviations compared with non-levee locations. Lower standard deviations were interpreted to be an indicator of better sorting. Detailed observations and measurements of the nature of the debris-laden flow deposits were only made in these two Cerro del Medio drainage basins and their adjacent piedmonts, but anecdotally we observed similar characteristics in the large deposits of other highly-impacted portions of the study area.

Copyright © 2014 John Wiley & Sons, Ltd.

In this study we used the US Forest Service’s BAER (Burned Area Emergency Response) Soil Burn Severity Class (SBSC) as the metric for quantifying the post-wildfire erosional potential of the landscape (USDA Forest Service, 1995). SBSC maps are produced rapidly after every significant fire event in the United States to determine if fire-caused changes in soil hydrologic function have resulted in an emergency that threatens life, health, property, or critical cultural and natural resources due to flooding, erosion and debris flows. The principal input to SBSC maps is a Burned Area Reflectance Classification (BARC) which uses the dNBR (delta Normalized Burn Ratio) measure of vegetation change derived from the reflectance in bands 4 and 5.

Figure 3. Photographs documenting rilling as an important hillslope erosion mechanism in the Cerro del Medio area. (A) Photograph of a hillslope rill approximately 0.5 m deep (41-cm-tall tape shown for scale, location 368961E, 3973072N, UTM zone 13). Rills of this size are common in hillslope and hollow areas of moderate and high-severity burns throughout the study area. (B) Photograph of an unusually deep rill (1.9-m-tall man for scale) (location 368992E, 3972895N). This figure is available in colour online at wileyonlinelibrary.com/journal/espl

Figure 4. Photographs documenting the debris-flow-dominated nature of the deposits in the Cerro del Medio area. (A) Photograph of a debris-flow-deposit cross-section located on the piedmont draining the south side of Cerro del Medio (20-cm-high notebook for scale). (B) Debris-flow deposit dammed behind collection of trees (1.9-m-tall man for scale). (C) Debris-flow levee located in the proximal area of the piedmont draining the south side of Cerro del Medio (41-cm-high tape for scale). This figure is available in colour online at wileyonlinelibrary.com/journal/espl
Bare-earth DEMs were constructed by NCALM using the Terrascan software package to distinguish ground from non-ground. The DoD map quantifies the erosion/deposition in every pixel. It is also possible to sum the values of erosion/deposition along flow paths to obtain the net erosion upstream from every pixel in the DEM. This value is also the net sediment exported through every pixel in the DEM. This process works by ranking all of the elevations in the DEM from highest to lowest, then starting at the pixel with the highest elevation (i.e. the one with no possible contributing area from upslope) and partitioning the sediment eroded from the bed (if any) into downslope pixels using the multiple flow direction (MFD) routing method of Freeman (1991). The Freeman (1991) method partitions the volume of eroded sediment that enters each pixel into the downstream pixels using the equation

\[f_i = \max_{j=1, 8} \left(\frac{S_j^j}{\sum_j \max_{j=1, 8} \left(S_j^j \right)} \right) \]

where \(f_i \) is the flow factor for each pixel, \(S_j^j \) is the sediment eroded from the bed (if any) into downslope pixels, and \(\sum_j \max_{j=1, 8} \left(S_j^j \right) \) is the total volume of eroded sediment that enters each pixel into the downstream pixels. The resulting raw DoD map must be filtered in order to remove changes that are the result of georeferencing errors and other artifacts. The starting point for such filtering is the inherent accuracy of the LiDAR and global positioning system (GPS) instruments at the height above the ground where the data were collected. NCALM estimates absolute positional accuracy to be in the range of 0.05 to 0.35 m for the two LiDAR datasets used here. Part of this error is associated with the spot size of the laser footprint on the ground. This part of the error is estimated to be \(H/5500 \) (1σ value), where \(H \) is the height of the airplane above the ground. For our LiDAR flights, \(H \approx 1000 \) m, therefore the 1σ spot-size error is 0.18 m. There is, in addition, a vertical error caused mostly by GPS height error. That error is more difficult to quantify because it depends on instantaneous conditions of satellite communications, but which the manufacturer estimates to be in the range of 0.05 to 0.35 m (Michael Sartori, personal communication, 2012). Dense canopy and especially dense ground cover can also contribute to vertical error by lowering point density and the uncertainty of knowing if any particular measurement was acquired at the bare-earth elevation.

In areas with terrain slopes greater than 45°, vertical errors larger than 0.35 m can occur because a horizontal error of 8σ translates into a vertical error equal to 8σ/S, where S is the slope gradient. This effect was readily apparent in the near-vertical cliffs of the south-eastern (Bandelier National Monument) portion of our study area where the cliff-forming Battleship tuff is exposed. On such near-vertical slopes, a horizontal error of only 0.18 m can result in apparent erosion/deposition of several meters or more. Actual changes of such magnitude are highly unlikely given that cliffs in the study area have little to no regolith cover. To address the potential error associated with cliffs, we eliminated all changes from the DoD in areas steeper than 45° prior to performing any other kind of filtering. This step affects only 1% of the study area.
where \(f_i \) is the fraction of incoming volume transferred to the neighboring pixel labeled by \(i \) (with \(i \) ranging from one to eight), \(S \), the slope gradient between the central pixel and its neighboring pixels (with downhill slopes defined to be positive, uphill slopes negative), and \(p \) is a free parameter. For \(p = 1.0 \), Freeman (1991) found that flow was preferentially directed towards diagonal pixels. Using a slightly higher value of \(p = 1.1 \), this effect was eliminated. As such, Freeman (1991) recommended using \(p = 1.1 \) for best results and we used that value in this study. The algorithm proceeds in rank order from the highest elevation pixel to the lowest elevation pixel in the DEM, summing the amount of erosion/deposition within the pixel being processed with the net erosion from upslope (deposition is treated as negative erosion). The net volume of material eroded upstream from each pixel can then be divided by the upslope contributing area to obtain a sediment yield with units of length (a unit of time is also implicit in this calculation because). Normalizing the sediment volume to compute a yield is useful because it allows drainage basins of different size to be compared to isolate the effects of terrain slope and burn severity. The resulting map is both the net surface elevation decrease upslope from each pixel and the sediment yield \(Y \) (expressed as volume per unit area, or length) transported through each pixel. Figure 6 gives an example of the output of this procedure for the Valle los Posos subarea of the study site. We used the MFD method of Freeman (1991) rather than the alternative D8 or D∞ flow routing methods because such schemes force flow to be transported to at most one (D8) or two (D∞) neighboring pixels and hence perform less well in areas of unconfined or distributary flow (such as the divergent portions of hillslopes and the piedmonts of the Valles Caldera) (Pelletier, 2008).

Given the wide range of available estimates of instrument error (i.e. 0.05 to 0.35 m) and the need to use the smallest filter possible so as to retain as much reliable change data as possible, we undertook an analysis designed to estimate the appropriate threshold filter value for our dataset. We used aerial photographs acquired before and one year after (acquisition date May 4, 2012, or just three weeks prior to the second airborne LiDAR flight) the Las Conchas fire in order to identify the areas where significant change took place. Given the large size of the study area, it is not feasible to map every location where significant erosion/deposition took place based on aerial photographs. As such, we focused on three regions (e.g. Valle los Posos, Cerro del Medio, and Bandelier National Monument) where the most significant changes occurred. Maps of where erosion/deposition occurred based on aerial photographic mapping (i.e. manually drawing visible areas of change determined by comparing the before and after photographs) (Figure 7A) were compared with maps of areas of erosion/deposition predicted using different threshold filter values ranging from 0.2 m to 0.4 m (Figures 7B–7D). The maps we obtained when using a threshold filter value of 0.4 m resulted in systematically fewer areas of change than we observed in the aerial photographs. Conversely, the map we obtained when using a threshold filter value of 0.2 m resulted in many areas that we were not able to verify in the aerial photographs. The lowest mismatch between the actual and predicted area of significant change occurred for the threshold filter value of 0.3 m. The results of this analysis, together with the stated accuracy limitations of the LiDAR and GPS instruments, provide a basis for choosing 0.3 m as the optimal value for the threshold filter. It should be noted that even after filtering all changes less than 0.3 m from the DoD there remain some small (but numerous) areas on hillslopes where change is predicted that is difficult to verify in the aerial photographs. For this reason, we also created an alternative, more conservative DoD (described later) that retains only those changes that occur on valley bottoms, i.e. those areas with a contributing area, \(A \), of greater than 0.001 km² (Figure 8). An area threshold of 0.001 km² was chosen based on a slope-area analysis of the study area (Figure 8). A plot of slope area (averaged in logarithmically spaced bins of contributing area) versus contributing area using logarithmic scales exhibits a ‘bend’ at a drainage area corresponding to the transition from hillslopes and hollows to valley bottoms (Tarboton et al., 1992; Iliasz-Vasquez and Bras, 1995). Figure 8 establishes that transition is to be 1000 m² or 0.001 km² in our study area. The purpose of this alternative DoD was to compare the sediment yield map

![Figure 6](https://example.com/figure6.png)

Figure 6. Example of the DEM-of-difference (DoD) and associated sediment yield maps for the Valle los Posos study subarea. (A) Aerial orthophotograph acquired on May 5, 2012. (B) Color map of DoD filtered using magnitude of change, with erosion shown using shades of blue (darker blue represents more erosion) and deposition down using shades of red. (C) Map of sediment yield obtained using the DoD shown in (B) but also filtered by contributing area (\(A \geq 0.001 \) km²). Location map for the area depicted in this figure is shown in Figure 9. This figure is available in colour online at wileyonlinelibrary.com/journal/espl
obtained with this DoD with the predictions of the DoD filtered by magnitude only in order to estimate how much sediment was derived from hillslopes and hollows versus valley bottoms.

Applying the threshold filter with a 0.3 m value removes instances of erosion/deposition that lack sufficient magnitude to be confidently attributed to actual erosion/deposition rather than errors in georeferencing and other artifacts. This filtering ensures that erosional processes that result in relatively thin (but possibly widespread) erosion and deposition will be excluded from the analysis. Other LiDAR datasets could have a smaller detection threshold if the plane were to fly closer to the ground or if the GPS precision were enhanced relative to our datasets.

Analysis of Sediment Yield Data Inferred from DEMs-of-difference (DoDs)

Figure 9A shows the sediment yield map obtained using the DoD which retains only changes ≥ 0.3 m in valley bottom areas (A ≥ 0.001 km²). Figure 9B shows the sediment yield map obtained when including all areas of the landscape (i.e. filtered only by the magnitude of change). Figure 10 illustrates the relationship between the average sediment volume and contributing area based on the map in Figure 9A. The results in Figure 10 were obtained by averaging exported sediment volumes from all areas (including those where post-fire erosion did not occur) and separately by averaging only those areas where sediment yield is non-zero. The results were similar; when averaging over all areas, sediment volume is a power-law function of contributing area with an exponent of 0.98 ± 0.03 (2σ value),
while when averaging over only those areas where sediment yield is non-zero, sediment volume is a power-law function of contributing area with an exponent of 0.93 ± 0.08 (2σ value).

The fact that volume scales linearly with contributing area (within uncertainty) provides a basis for dividing sediment volume by contributing area to compute maps of sediment yield instead of volume, as in Figure 9. It is useful to work with sediment yield (i.e. volume per unit area) rather than volume because basin size is the largest single factor in determining sediment volume; normalizing for that dominant factor enables the effects of terrain slope and SBSC to be highlighted in the analysis.

Average sediment yields increase steadily and non-linearly with average terrain slope and average SBSC within a drainage basin (Figures 11A and 11B). The map of SBSC for the Las Conchas wildfire used in this analysis is shown in Figure 2B.

The effect of average slope and SBSC on average sediment yields can be quantified using

\[Y = aS^bB^c, \]

where Y is the average sediment yield (in millimeters), \(S \) is the average slope (in m m\(^{-1}\)), \(B \) is the average SBSC, and \(a \) (in millimeters), \(b \) (dimensionless), and \(c \) (dimensionless) are coefficients equal to 1.53 ± 0.04 mm, 1.6 ± 0.13, and 1.7 ± 0.23 (uncertainties are 1σ values) for the sediment yield data obtained from the DoD filtered by both magnitude of change and contributing area (Figure 11A), and 4 ± 1 mm, 1.0 ± 0.13, and 1.5 ± 0.24 for the sediment yield data obtained from the DoD filtered by the magnitude of change only (Figure 11B). In Equation (2) we have converted the SBSC from discrete classes of low, moderate, and high burn to numerical values equal to one, two, and three. The values of \(a \), \(b \), and \(c \) were obtained from a least-squares multiple linear regression of the log of Y to the logs of \(S \) and \(B \). That analysis yielded \(R^2 \) coefficients of 0.93 for the data plotted in Figure 11A and 0.87 for the data plotted in Figure 11B. Performing regressions on the average sediment yields rather than all of the data points is appropriate because it weighs all average terrain slope values (within the range of slopes considered, i.e. 0.05 to 1.0) and average SBSC values equally rather than weighing those values that are more common in the landscape (as would be the case if all pixels were used and treated equally in the regression analysis). Figure 11C plots all of the sediment yield data (subsampled by a factor of 30 to reduce the number of points to a number that is practical to plot) with an average SBSC in the range of 2.5 to three, illustrating the wide variability in sediment yields within areas of similar average terrain slope and average SBSC. Figure 12 plots the average sediment yield versus drainage basin area.
Discussion

The regression analysis that led to Equation (2) indicates that the sediments transported by debris-laden flows triggered by the Las Conchas wildfire and subsequent rainstorms exhibit yields that vary as a power-law function of average terrain slope and average SBSC within drainage basins with exponents equal to approximately 1.5. The slope exponent is somewhat lower, i.e. 1.0, if sediment from hillslopes and hollows are considered. Our analysis demonstrates that sediment yield may decrease slightly with increasing drainage basin area (Figure 12), but this trend is not statistically significant at the 2σ level (i.e. sediment volume is a power-law function of drainage basin area with best-fit exponents of 0.98 ± 0.03 and 0.93 ± 0.08, hence yield is a power-law function of area with exponents of −0.02 ± 0.03 and −0.07 ± 0.08, respectively). These results are generally consistent with the results of prior studies that used valley-bottom cross-sectional surveys or sediment traps to document the effects of terrain slope and burn severity on sediment volume or yield (described in more detail later). However, there is a strong basis for confidence in the results of this paper given that our measurements are spatially continuous (for changes greater than 0.3 m) over a large (i.e. 197 km²) area. Equation (2) should provide a useful method for predicting how terrain slope and SBSC control sediment yields in post-wildfire debris-laden flows.

It should be emphasized, however, that the sediment yield data exhibit wide variability about the mean. Figure 11C, for example, shows that areas of similar average terrain slope and SBSC exhibit variations in sediment yield over three orders of magnitude. Similar variability has been reported in other post-wildfire erosion studies. For example, Wagenbrenner and Robichaud (2013) reported sediment yields in drainage basins of similar contributing area, rainfall intensity, etc. that vary over four orders of magnitude. This variability is likely due, in part, to the dependence of post-wildfire erosion processes on small-scale heterogeneity in forcing (e.g. rainfall intensity) and resistance (e.g. soil cohesion) variables that are difficult to quantify. Previous studies have incorporated the effects of unquantified (or unquantifiable) small-scale heterogeneity in the variables that control post-wildfire erosion by introducing a probabilistic element. For example, Gartner et al. (2008) and Cannon et al. (2010) used one equation to predict the probability of a significant debris flow occurring within a wildfire-affected drainage basin and a second equation to predict the volume of sediment exported from a drainage basin if a significant debris flow (i.e. one measurable using valley-bottom cross-sectional surveys) occurs. In their approach, much of the variability in sediment yields is represented by the probability-of-occurrence equation. Equation (2), in contrast, includes the average sediment yield from areas with and without debris flows readily observed and measured in the field, hence the variability about the mean is large.

In this paper we presented two alternative maps for sediment yield, i.e. one based on a DoD filtered only by the magnitude of change only (values ≥ 0.3 m are retained) and another filtered by both the magnitude of change and contributing area (values ≥ 0.3 m and A ≥ 0.001 km² are retained). Average sediment

Figure 11. Dependence of average post-wildfire sediment yields, Y, on average terrain slope, S, and average SBSC, B, in drainage basins and comparison of the measurements to the predictions of the empirical model (Equation (2)). Bolder line styles indicate data from more severely burned areas. (A) Relationships among measured and predicted average sediment yields, average terrain slope, and average SBSC using the DoD filtered for both magnitude of change and contributing area. Dashed lines show predictions of Equation (2). Measured data are shown using solid (i.e. un-dashed) lines joining the circles. Note logarithmic scales on both axes. Averaging was performed in six logarithmically spaced bins of slope centered from 0.07 to 0.7 and three bins of average SBSC (B = 0.5–1.5, 1.5–2.5 and 2.5–3). (B) Same as (A) except using the DoD filtered for magnitude of change only. (C) Plot of all sediment yields measured in areas of moderate to high average SBSC (B = 2.5–3.0), illustrating the large variability about the mean trends illustrated in (A) and (B).

Figure 12. Plot illustrating the dependence of average post-wildfire sediment yield, Y, on contributing area, A, in drainage basins. Three LiDAR-based measured curves are presented corresponding to yields computed using (1) a DoD filtered by the magnitude of change only, (2) a DoD filtered by the magnitude of change and contributing area (all areas included) and (3) a DoD filtered by the magnitude of change and contributing area with only the areas where erosional events actually occurred included in the analysis. Yields were averaged in 11 logarithmically spaced bins from 0.0001 to 20 km² (only nine bins from 0.001 to 20 km² for the case of the DoD map filtered by area). This figure is available in colour online at wileyonlinelibrary.com/journal/espl
yields obtained by filtering the DoD by the magnitude of change only (Figure 9B) are approximately three times larger than those obtained using the DoD filtered by using both the magnitude of change and contributing area (illustrated in Figure 9A). This result suggests that the majority of sediment exported from drainage basins in our study area was derived from hillslopes and hollows rather than from valley bottoms. We regard the map based on DoD filtering by both magnitude of change and contributing area as the most conservatively reliable map in the sense that we have high confidence that nearly all of the measured change actually occurred. We can be less confident that all or nearly all of the change in the map shown in Figure 9B (which includes hillslopes and hollows as sediment sources) actually occurred because it is more difficult to visually confirm small topographic changes everywhere on hillslopes over a large study area due to the fact that erosion often occurs in narrower zones and because forest cover tends to obscure changes on hillslopes more so than in valley bottoms. Given that upland landscapes are typically ~99% hillslopes, even if potentially erroneous values occur with a relatively low density on hillslopes they can collectively add up to a significant proportion of the total. There are, however, two reasons to be confident that much of the yield measured on hillslopes and hollows and included in Figure 9B actually occurred. First, Figure 3 demonstrates that significant hillslope erosion occurs in our study area that is well above the change detection threshold for airborne LiDAR. Second, Figure 11B shows that when hillslopes are included in the sediment yield analysis, the resulting data retain highly significant correlations with average terrain slope and SBSC. If the DoD were generally unreliable on hillslopes even above the 0.3 m threshold, we would expect poor or non-existent correlations with average terrain slope and SBSC. Measurement of post-wildfire sediment transport using airborne LiDAR data is expensive to acquire. As such, the temporal resolution associated with airborne LiDAR data will likely remain low relative to simpler, less-expensive methods (such as sediment traps) which provide data with very limited spatial coverage but can resolve individual rainstorms. The limitations of airborne-LiDAR change detection and the associated empirical equation we developed (Equation (2)) are somewhat mitigated, however, when combined with the data and associated empirical equation developed by Wagenbrenner and Robichaud (2013) using sediment traps. These authors quantified how post-wildfire sediment yields derived from bedload transport depend on drainage basin area, percent ground cover, event-based rainfall intensity, and time following a wildfire. Their empirical equation predicts sediment yield (expressed in Mg ha$^{-1}$) between spatial scales of 20 m2 to 1.17 km2 based on input data for percent ground cover, C_n, storm intensity I_i (mm h$^{-1}$), drainage basin area A (m^2), and a regression coefficient for each year following the wildfire, b_a as

$$ Y = 10^{0.018 C_n + 0.042 I_i + 0.021 b_a - 0.21}. \quad (3) $$

The mean value for the coefficient $10^{0.018 C_n + 0.042 I_i + 0.021 b_a - 0.21}$ for all wildfires and all terrain slopes was 3.80 Mg ha$^{-1}$ m2. For the first year following a wildfire event. Assuming a soil density of 1500 kg m$^{-3}$, Equation (3) predicts one-year sediment yields in the range of 1.4 to 5.9 mm for drainage basins ranging in area from 0.001 km2 to 1 km2, i.e. broadly consistent with the values obtained in this study. Equation (2) nicely compliments Equation (3) in that Equation (2) includes effects neglected in Equation (3) (e.g. terrain slope) while Equation (3) includes effects neglected in Equation (2) (e.g. rainfall intensity). That said, it is unclear without further research (e.g. a comparison of sediment yield measurements obtained using sediment traps and airborne LiDAR change detection at the same site) whether Equations (2) and (3) can be combined to form a single predictive equation given the different measurement techniques employed and the different sediment transport processes captured by those methods. Moreover, the two studies reach somewhat different conclusions on a few points. For example, Wagenbrenner and Robichaud (2013) reported a weak dependence on drainage basin area (Equation (3)) while we report no statistically significant decline in sediment yield with increasing drainage basin area. It is difficult to compare our results with those of Wagenbrenner and Robichaud (2013) with regard to burn severity since they used percent ground cover rather than SBSC as their measure of burn severity and recovery. Clearly a higher burn severity class correlates broadly with lower percent ground cover, hence the two empirical equations make qualitatively similar predictions with respect to ground cover/burn severity. There is a potential advantage in using SBSC in predictive equations for post-wildfire sediment yields since SBSC incorporates vegetation density before the fire and is readily measured by BAER teams shortly following all major US wildfires. In contrast, estimates of ground cover generally require point-based field measurements by individual investigators. Our conclusion that sediment was sourced primarily from hillslopes and hollows potentially differs from the conclusions of Santi et al. (2008), who measured rill erosion from hillslopes in burned areas of the south-western United States and found that rill erosion accounted for an average of only 3% of the total post-fire erosion in the drainage basins they studied. This finding is consistent with similarly low percentages of rill erosion on hillslopes measured in the Colorado Front Range by Moody and Martin (2001). There are at least three possible reasons for this apparent discrepancy. First, our study and those of Moody and Martin (2001) and Santi et al. (2008) all consider different study areas and wildfire events. Individual events can and do differ in the relative importance of hillslopes as sediment sources, and it may be that the Las Conchas wildfire is an outlier in this regard. Second, Santi et al. (2008) considered rills and side channels separately in their analysis but it may be that some of their side channels are analogous to our hillside rills. In their Figure 9, for example, they show a debris flow that occurred in a side channel that appears to be a relatively planar or weakly convergent hillside or hollow. If side channels and rills are considered together, Santi et al. (2008) found that such areas produced a large percentage (i.e. between 8% and 66%, depending on the study site) of the total sediment exported from the landscape. A third possibility is that some of the erosion/deposition values we measured that were greater than 0.3 m on hillslopes and in hollows were, in fact, caused by georeferencing and other artifacts.

Gartner et al. (2008) and Cannon et al. (2010) developed what is perhaps the most widely used model for predicting the probability and volume of debris flows in wildfire-impacted drainage basins. Indeed, the Gartner–Cannon model was used by Tillery et al. (2011) to predict debris flows in our study area shortly following the Las Conchas fire. Unfortunately, it is difficult to compare the empirical equation we developed in this work with the Gartner–Cannon model because their model applies only to debris flows. Our field observations indicate that, while debris flows are likely the dominant type of erosional events in our study area, flood and hyperconcentrated flow deposits are also present.

Conclusions

Our results demonstrate that airborne LiDAR datasets acquired before and after wildfires and subsequent rainstorms can be
useful in constructing high-resolution, spatially continuous maps of post-wildfire sediment yields over large areas. Such maps are limited, however, in that they can only resolve relatively large magnitudes (i.e. ≥ 0.3 m for the LiDAR data products used in this study) of erosion and deposition. Using such a map for the Las Conchas wildfire and subsequent rainstorms that occurred one year after the wildfire, we showed that the average sediment yield from a drainage basin is a power-law function of the average terrain slope and SBSC of the drainage basin. Our empirical Equation (2) should provide a useful tool, together with empirical equations developed by other researchers (e.g. Wagenbrenner and Robichaud, 2013), for predicting post-wildfire sediment yields.

Acknowledgements—The authors thank NSF for funding the post-fire LiDAR data acquisition (through a supplementary award to NCALM) and for funding the UA Critical Zone Observatory via NSF Award #0724958. The authors also thank NCALM for collecting the LiDAR data and producing bare-earth DEMs and Michael Sartori for helpful discussions regarding the positional accuracy of airborne LiDAR data products. The authors wish to thank editor Stuart Lane, the associate editor, John Moody, and two anonymous reviewers for comments which helped us improve the manuscript.

References

Miller JD, Safford HD, Crimmins M, Thode AE. 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 12: 16–32.

