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Rehabilitation Strategies after Fire: 
The California, USA Experience 

Peter M. Wohlgemuth1*, Jan 1. Beyersl and Ken R. Hubbert2 

Abstract 

Emergency rehabilitation to mitigate the effects of flooding, accelerated 
erosion, and sedimentation that inevitably follows wildfire has been practiced 
in California, USA for nearly a century. However, California is a physically 
and culturally diverse area, and rehabilitation measures that work in one 
part of the state may not be appropriate in other regions. Rehabilitation 
philosophy can vary with different land management or hazard protection 
agencies, and may often reflect socio-political considerations as much as the 
resources or values at risk. Initial rehabilitation efforts in California focused 
on seeding burned hillsides and building engineering structures in the 
stream channels or at the mouths of canyons. Measures were refined, new 
techniques were developed, and the process was formalized in the 1960s and 
1970s, with many agencies adopting Burned Area Emergency Response 
(BAER) programs. Current rehabilitation approaches still include treatments 
both on the hills lopes and in the stream channels, but also address the 
problems associated with wildland roads. Many lessons have been learned 
over the years, but many challenges remain, not the least of which is 
communicating the vast· body of knowledge and experience both to the 
general public and to political decision-makers in order to make educated 
post-fire rehabilitation choices. 

INTRODUCTION 

During a two-week period of October 2003, nearly a dozen wildfires were 
burning simultaneously in southern California. Fanned by hot, dry foehn-type 
winds, known locally as Santa Ana's, this Fire Siege eventually consumed the 
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vegetation on over 290,000 hectares, making it the largest fire event in 
Californian history. The fires occurred in a variety of plant communities 
including some forested lands, but primarily burned in chaparral shrubland~ 
and coastal sage scrub ecosyst~ms. Fire suppression costs were in the tens of 
millions of dollars (US). 

Even before the fires were out, interdisciplinary teams of reSOurce 
specialists deployed to inventory the damage, assess the likely impacts of the 
coming winter storms, identify the values at risk from the inevitable flOOding 
and accelerated erosion that would ensue, and recommend cost-effective 
mitigation treatments. These emergency rehabilitation measures are designed 
to protect human lives, public and private property, infrastructure (roads, 
bridges, pipelines, utility lines, communication sites, reservoirs, etc.), water 
quality, heritage and archaeology resources, and the habitat for threatened 
.and endangered species of animals and plants. Every fire in the 2003 southern 
California Fire Siege was different in its location, topography, proximity to 
urban areas, and threats to values at risk, hence the recommended treatments 
varied accordingly. Cumulative treatment costs eventually exceeded US$7 
million. 

The foregoing example illustrates the problem of wildfire across 
California. Wildfire is commonplace - with the state experiencing numerous 
fires every year - and extremely large fires or complexes of many fires are not 
rare occurrences. Consequently, rehabilitation after fires is a highly-evolved 
management practice in California. However, California is a large and diverse 
area containing many different vegetation communities and resources in need 
of protection. Moreover, rehabilitation techniques have developed over time 
and continue to be refined. This chapter begins with a discussion of California 
as a diverse landscape, and then traces the historical development of burned 
area emergency rehabilitation practices throughout California, including the 
lessons learned·and the future directions. 

CALIFORNIA AS A DIVERSE LANDSCAPE 

California covers a huge area - some 41,000 km2 -larger than many countries 
(Fig. 1). Moreover, California is extremely heterogeneous, exhibiting much 
diversity in both physical and social characteristics. Consequently, post-fire 
rehabilitation strategies depend on the geography, the agency jurisdiction, 
and the resources or values at risk associated with a specific wildfire. 

Physical Landscape 

California covers 10 degrees of latitude that encompasses coastal 
environments, mountains, valleys and lowlands, and deserts (Fig. 1). 
California contains both the tallest mountain (Mt. Whitney - 4418 m) and the 
lowest elevation (Death Valley - 86 m below sea level) in the co-terminus 
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Fig.l Location map of California, USA with topography (courtesy of geology.com). 

United States (excluding Alaska and Hawaii) (Oakeshott1978). Although the 
state is incredibly diverse, there are some recognizable regional similarities 
across California. The northern portion of the state is more mountainous, 
receives more rainfall, and has more forest stands than its southern 
counterpart, which is generally less mountainous, drier, and dominated by 
brushfields and desert scrub vegetation. The contrast between the coastal strip 
and the inland section of California is even more pronounced, with greater 
rainfall and moderate temperatures along the coast promoting more mesic 
conditions that support luxurious vegetation growth and some unique 
environmental niches (Durrenberger and Johnson 1976). 

I 
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The topography of California is dominated by coastal mountain ranges, a 
large central valley, and a large mountain mass in most of the eastern parts of 
the state (Fig. 1). The structural grain of this topography trends along a 
northwest-southeast axis. The lofty heights coupled with the large relative 
relief in the uplands reflect the ongoing tectonic activity at the junction of the 
Pacific and North America crustal plates (Hornbeck et al. 1983). The overall 
climate of California is classified as Mediterranean; characterized as haVing 
cool, moist winters and hot, dry summers. Temperatures approach 40°C in the 
summer but seldom drop below -lOoC in the winter, except in the high . 
mountains. Annual precipitation varies from 40 to 60 cm along the coast to 
10 to 25 em inland, with mountain ranges receiving 70 to 100 cm along 
orographic gradients. A section of the northwest coast can receive as much as 
250 cm of rainfall annually (Hornbeck et al. 1983). While there are rivers and 
perennial streams throughout California (especiallyin the north), many of the 
canyons and valleys only support ephemeral watercourses for much of the 
year (primarily in the south). 

. Vegetation patterns in California mirror the trends in temperature and 
precipitation. Forests of pine (Pinus), fir (Abies), and oak (Quercus) with minor 
other hardwoods dominate the uplands, especially in the northern section of 
the state. Foothills and the lee side of many lower mountain chains are 
covered with chaparral brushfields. Grasslands were once prevalent in the 
valley bottoms and lowlands, but most of these areas have been converted to 
agriculture or urban centers. Sparse scrub - including cacti - and sagebrush 
covers most of the deserts and arid rangelands, especially in the southern part 
of the state (Hornbeck et al. 1983). 

Erosion and sedimentation in California reflect both gravitational 
processes associated with steep topography and hydrologic processes 
resulting from seasonal winter rains. Dry ravel is the dry gravitational flow of 
soil material, and can be a major process by which sediment is delivered from 
the hillslopes to the stream channels (Rice 1974). Ravel is a ubiquitous erosion 
process in southern California, but also occurs on steep slopes in the north. 
Fire greatly accentuates the efficacy of dry ravel (Rice 1974). 

Rainsplash and overland flow are the two hydrologic erosion processes 
that operate on hillside slopes. Raindrops can dislodge loose soil material and 
preferentially transport it downhill. Overland flow may concentrate into 
micro-channels that can entrain and transport sediment, creating rills or 
gullies, especially on steep slopes (DeBano et al. 1998). Both rainsplash and 
overland flow are negligible on unburned landscapes with a sufficient 
vegetation canopy. Fire consumes the protective vegetation and may alter the 
surface soil structure. This is typical of fire behavior in chaparral brushfields, 
but is also experienced in forested ecosystems, especially if there is a brush 
understory. The bare soil becomes very susceptible to erosion by hydrologiC 
processes. Moreover, chemical changes in the soil following fire can produce 
a non-wettable or water repellent condition that restricts infiltration and 
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promotes overland flow (DeBano 1981). This extra water flows from the 
hillsides to the adjacent stream channels, where it can mobilize sediment 
stored in dry ravel deposits. The slurry that is created can propagate down 
the stream channel as a debris flow with tremendous erosive power (Wells 
1987). ' 

Management Landscape 

Although there are significant tracts of private property, most of the uplands 
of California are administered as public lands. Lands managed by the federal 
government include 7 National Parks, 9 National Monuments or National 
Recreation Areas, 18 National Forests, 6 military reservations, and scattered 
areas under the jurisdiction of the Bureau of Land Management. There are also 
many square kilometers of land administered by local Native American tribes. 
La:nds managed by the State of California include 10 State Parks and several 
State Forests. Numerous county and municipal parks also cover upland areas. 

Across the various federal, state, county, and municipal agencies that 
administer these lands, there is no uniform policy for post-fire rehabilitation. 
In keeping with their conservation preserve mandate, national and state parks 
tend to avoid ground-disturbing mitigation practices, unless there are high­
value resources at risk, such as critical habitat for endangered species. They 
also avoid the use of non-native seeds or mulches that may introduce exotic 
weeds into pristine stands of native vegetation. Several federal agencies - the 
U.S. Department of Agriculture, Forest Service and the U.S. Department of 
Interior, Bureau of Land Management - have long-established programs of 
emergency response that include standing teams of resource specialists who 
consider all teclmiques when making their rehabilitation recommendations. 

A major difference in agency philosophy is the contrast between land 
management and hazard protection. Land management agencies, at whatever 
governmental level, have long-range plans that direct recreation development, 
commodity extraction, and resource protection on the lands within their 
jurisdiction. Hence, post-fire rehabilitation would proceed only within the 
context of the existing land management planning. Hazard protection 
agencies, such as the California Department of Forestry and Fire Protection, 
which oversees fire suppression and post-fire rehabilitation on non-federal 
public and private lands, react to immediate emergencies and respond to 
specific events with mitigation as their sole focus. Thus conflicts can arise in 
recommending and implementing post-fire rehabilitation projects for fire 
incidents that cover multiple landowners. 

Socio-political Landscape 

Specific post-fire rehabilitation measures are usually dictated by on-site or 
downstream resources or values at risk from the flooding and accelerated 
erosion that typically follow wildfires. While resource specialists strive to 
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make cost-effective treatment recommendations based on the best available 
science, often decisions reflect socio-political considerations. 

Protection of human life is paramount when recommending emergency 
rehabilitation treatments. Measures to prevent threats to human communities 
are implemented first, often with redundant techniques. Early warning 
systems may be established to sound the alarm if rainfall in the burn area 
exceeds some critical threshold or if the creeks rise to some specified flood 
stage. Evacuation orders may also be issued if the area is deemed too 
dangerous for human occupation. Following the 2003 Old Fire in southern 
California, a storm cell stalled over the burned area. After several days of rain; 
a high-intensity burst occurred on Christmas Day, producing debris flows in 
the stream channels within the burned area. Tragically, 16 fatalities occurred 
in these flow events because people were unaware or ignored the repeated 
evacuation orders (Hubbert 2005). 

threats to private property and technological infrastructure are usually 
the main targets of rehabilitation measures. Homeowners and business 
proprietors downstream from a burned area may erect sandbag barriers or 
deflection structures to protect their property, but the most effective treatments 
try to control runoff and erosion at the source; in the burned area itself. Roads 
and bridges are critical values at risk, as they often provide the only access to 
'isolated communities or remote communication sites. Pipelines, whether they 
carry water or petroleum products, also receive special consideration for 
rehabilitation treatment protection because of the potential for environmental 
disaster if flooding or erosion should damage the conduit. Similarly, utility 
lines warrant special protection. Flood control reservoirs and debris basins 
were built specifically to handle the floods generated from burned areas, but 
the hillsides and stream channels contributing to water supply reservoirs are 
usually treated to prevent siltation and the loss of storage capacity. 

Loss of soil productivity is always an issue for maintaining ecosystem 
integrity, but it is of special concern in forest stands used for commercial 
timber production. Although burning liberates nutrients from the standing 
biomass and the forest floor, accelerated erosion and leaching can remove 
these chemical compounds before they can benefit stand regeneration. 
Rehabilitation treatments on hillside slopes attempt to retain valuable topsoil 
and prevent site degradation through unacceptable losses of critical nutrients, 
such as nitrogen and phosphorus (DeBano et al. 1998). 

The soil and nutrients stripped off the burned hillsides are usually 
deposited in the stream channels at the bottom of the slopes. H these channels 
support surface runoff, the character of the water will be tremendously altered. 
Increased turbidity from the sediments and elevated solute concentrations of 
compounds from the ash can be lethal to aquatic organisms, especially fish 
populations important for food production and recreation. Post-fire 
sedimentation will also preferentially fill stream pools, further degrading fish 
habitat. Rehabilitation efforts strive to keep sediment from initially entering 
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the stream channels, and then subsequently remove the entrained load, 
usually by a series of barrier structures. 

The California floristic province is considered a hotspot of biodiversity 
(Myers et al. 2000) because of the large number of rare species and the ongoing 
habitat loss that affects them. As a result, consideration of rare species is now 
a part of most post-fire rehabilitation decisions within the state. For National 
Forest lands, rehabilitation treatments may be applied to prevent permanent 
impairment of critical habitat for threatened and endangered species (Forest 
Service Manual 2523.2), including measures such as planting of streamside 
willows for waterway shading, so long as the treatment(s) will be effective 
within two years. Areas known to harbor populations of rare plants may be 
excluded from seeding or mulch treatment prescriptions in order to prevent 
competition or other adverse effects. For example, after the Cedar Fire of 2003 
in San Diego County, locations of suitable habitat for rare endemic annual 
plants were excluded from an aerial hydromulch application. 

In extreme cases, where post-fire flooding or debris flows are expected to 
greatly alter habitat, populations of rare species may be collected and moved 
or retained in a zoo for later reintroduction. After the Old Fire in 2003, for 
example, mountain yellow-legged frogs were captured from a creek on the San 
Bernardino National Forest and taken to the Los Angeles zoo, where they 
thrived. Winter storms scoured out the stream channel where they had 
occurred. Amazingly, however, some frogs were found in the creek a year 
later, possibly washed down from tributary streams unaffected by the fire. 
Other treatments for rare species may include seeding grasses along stream 
banks to help reduce sediment movement into streams, as was done after the 
2000 Manter Fire to protect populations of California golden trout. 

Heritage or archeological resources often need protection following fires. 
The removal of plant cover is the primary concern due to increased 
accessibility and visibility of the cultural sites. The sites then become more 
susceptible to vandalism and artifact looting. However, managers can also 
perform surveys to identify new, undiscovered sites before vegetation 
recovery. Treatments in California usually consist of patrols, fencing, and road 
closures to discourage the above activities. Monitoring of the sites continues 
until vegetative groundcover recovers to the extent that visibility of the sites is 
obscured. 

Wildfire can create ideal conditions for the growth and spread of invasive 
species. The bate mineral soil, lack of overstory shading, and readily available 
nutrients deposited in the ash layer after a fire provides an ideal se.edbed for 
many non-native plants (Brooks and D'Antonio 2001). The role of fire in the 
spread of invasive plants has been receiving increased attention in recent 
years (e.g., Galley and Wilson 2001, Brooks et al. 2004). Fire disturbance has 
aided the spread of weed infestations that were already present before the fire, 
either in the seedbank or in proximity to the bum. In most cases, weed species 
that are found were likely present prior to the burning, but were released from 
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competition following the fire. Over the years, pre-fire seed banks of invasive 
weed species have increased in quantity and area covered. Most of the 
invasive weeds are prolific seed producers and can remain viable for long 
periods of time. In California, fires that dccur too frequently can also facilitate 
the conversion of native shrub and herbaceous vegetation into non-native 
grasslands (Keeley 2001). 

Preventing the spread of invasive species into burned areas has become 
an important part of post-fire rehabilitation strategies in California. Measures 
taken can range from surveys to identify and remove new infestations to 
seeding native or short-lived non-native grasses in an attempt to out-compete 
invasive plants. However, it is still unknown whether this seeding can 
prevent the establishment of noxious weeds. Increased weed infestations are 
commonly observed in areas of fire suppression activities. Most of the 
incursions are associated with roadsides, bulldozer lines constructed to create 
fuel breaks, and drainages near human habitation (BAER Guidance Paper: 
Noxious and Invasive Weed Treatment, March 2004, unpublished data). 

INITIAL REHABILITATION EFFORTS 

The association between wildfire and subsequent flooding, accelerated 
erosion, and massive sedimentation has long been recognized throughout 
California, especially in the mountains along the southern coast. 
Observations of the phenomenon were reported in newspaper articles as far 
back as the late 1800s, and erosion control treatments following fires were 
suggested in the early part of the last century (Munns 1919). The event that 
galvanized public awareness and focused attention on the need for post-fire 
rehabilitation projects was the 1934 New Year's Day flood in La Crescenta, 
located in the foothills neat Los Angeles. A high-intensity storm produced 
heavy rainfall on a freshly burned landscape and produced debris flows that 
scoured side tributaries to depths of up to 5 m and moved boulders the size of 
automobiles several kilometers from the mountain front (Kraebel 1934). The 
community experienced massive property damage and several people were 
killed. Initial rehabilitation efforts in the first half of the 20th century consisted 
of seeding the burned hillsides to produce a rapidly growing ground cover, 
and building engineering structures in the stream channels and at the mouths 
of the canyons to trap and remove sediment. 

Foresters in southern California tried seeding burned-over hillside slopes 
with native shrubs as early as the 1920s to try to reduce post-fire erosion 
(Department of Forester and Fire Warden 1985). When they realized that 
shrub seeds germinated no earlier than natural regeneration, faster-growing 
non-native herbaceous species, such as Mediterranean mustards (Brassica 1. _ 
spp.) were used (e.g., Gleason 1947). However, mustard seeds would 
subsequently be spread to downstream agricultural areas, where the plants 
were considered nuisance weeds by the local farmers. By the 1950s annual 
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ryegrass (Lolium multiflorum Lam., native to Europe and Asia) had come to be 
regarded as the most effective and economical choice fo~,charred California 
wildlands (Barro arid Conard 1987). Ryegrass was relatively inexpensive, 
readily available, and could easily be applied from the air over wide areas. 

One benefit of heavily seeding chaparral burns with ryegrass was that it 
tended to inhibit shrub seedling regeneration, which could be used to increase 
pasturage by type-converting dense shrub stands to annual grasses with 
occasional shrubs (see Schultz et al. 1955). Type-conversion of brushlands 
was also a goal of some prescribed fire programs on both private and public 
lands during this period, especially in the coast ranges and the foothills of the 
Sierra Nevada (Keeley 2001). 

As in other areas, seeding forestlands after fire for soil retention and range 
imptovement used species of predominantly non-native pasture grasses and 
forbs (see Chapter 11). Seed mixes generally contained annual grasses to 
provide quick cover, perennial grasses to establish long-term protection, and 
often legumes to add nitrogen to the soil (Ratliff and McDonald 1987). 

Engineering solutions for post-fire rehabilitation and erosion control took 
the form of building barrier structures to trap and retain the transported debris 

, once it had reached the stream channels. Channel checks are low dams «2 m 
high) constructed in a series, spaced approximately 50 to 60 m apart. 
Although they could be made of any materials, often they were fabricated 
using wire cages filled with local rock material ranging in size from large 
cobbles to small boulders (Eaton 1932). These check dams could only trap and 
store modest amounts of sediment material, but they also served as drop 
structures to dissipate the energy of the flow, as well as grade control features 
to prevent channel incision and potential destabilization of the lateral banks 
and adjacent colluvial toeslopes (Eaton and Gillelen 1931). However, these 
'check dams are time-consuming to plan and complete. As it is unrealistic to 
build a series of check dams on many creeks in the short period between the 
fire and flood-producing rains, they must be constructed in advance on 
streams within fire-prone areas. 

Debris basins are large earthen or concrete settling reservoirs built at the 
mouth of major canyons where the streams flow onto the adjacent flatlands. 
As sediment-laden floods and/ or debris flows enter the basin, the coarse load 
drops out in the low energy environment and becomes trapped. Relatively 
clear water then escapes over a spillway. After the event, the basin is cleaned 
out with heavy equipment so that storage capacity is sufficient for the next 
storm. This becomes problematic when a series of storms strikes over the 
course of several days. Moreover, these debris basins are very expensive and 
require considerable time to build. As with check dams, debris basins must be 
constructed in advance at the base of canyons within fire-prone areas. Many 
dozens of debris basins were built by local flood control districts throughout 
California between 1925 and 1960. 
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DEVELOPMENT OF THE REHABILITATION PROCESS 

Nationally, the 1960s and early 1970s saw the preparation of the first official 
written reports on emergency postfire watersh~d rehabilitation. Funding for 
postfire rehabilitation treatments came from fire suppression accounts, 
emergency flood control programs, or funds appropriated for watershed 
restoration. After a Congressional inquiry on fiscal accountability, formal 
authority was provided for Burned Area Emergency Rehabilitation, now 
called Burn Area Emergericy Response (BAER) programs in the federal 
interior and related agencies appropriation in 1974 (Robichaud et al. 2000). 
This authority integrated the evaluation of burn severity, funding request 
procedures, and treatment options. In the U.S. Department of Agriculture, 
Forest Service, a standardized Burned Area Report form was developed and 
used for this purpose. Interdisciplinary teams were assemblec:l after major fires 
to assess the burned area, identify threats, and recommend treatments. 

This was also a period of active investigation into the effectiveness of 
established and new post-fife rehabilitation ' treatments in California. 
Broadcast seeding of entire burned areas, usually with annual ryegrass, was 
commonplace (Barro and Conard 1987), and controversy over its use ensued, 
particularly. in southern California chaparral (Gautier 1983). Engineering 

. solutions to runoff and erosion threats were also employed. The contribution 
of roads to sediment movement and water channelization was recognized, 
and road treatments to reduce these effects were increasingly prescribed 
(Burroughs and King 1989). 

Hillslope Treatments 

After the 1960 Johnstone Peak fire on the San Dimas Experimental Forest in 
southern California, Forest Service researchers set up an extensive experiment 
testing different hillslope rehabilitation treatments in burned-over chaparral 
watersheds. Several seeding treatments, hillslope terracing, and various 
combinations were applied to small catchments, in which sediment 
deposition and runoff were measured. When the first winter after the fire 
proved to be one of the driest on record, with negligible grass establishment, 
the treatments were reapplied, and the next year the highest rate annual grass­
seeded catchments recorded a 16 percent reduction in sediment production. 
Seeded grass cover was about 8 percent (Krammes and Hill 1963). The 
researchers noted that the seeded catchments had lower cover of native plants 
than the unseeded controls (Corbett and Green 1965). In contrast, the 
watersheds with the terrace treatment reduced sediment production by 60 
percent compared to un-terraced catchments (Rice et al. 1965). 

Contour trenches were also installed operationally after fires where flood 
control was a major concern. In the Sierra Nevada, their effectiveness was 
found to depend on the soils and geology of the affected area (DeByle 1970). 
However, terraces and trenches are radical ground disturbing practices, and. 
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remnants of these treatments that were applied in the 1960s in some cases can 
still be seen on the landscape today. 

The effectiveness of annual ryegrass seeding for erosion control in 
chaparral ecosystems was questioned in the late 1970s and early 1980s. After 
fire in a ch~parral, annual plants and shrub seedlings take advantage of the 
abundant hght, space and soil nutrients suddenly available and fairly quickly 
occupy burned sites (Sampson 1944, Sweeney 1956, Keeley 1991). Seeded 
ryegrass was shown to displace those species, often without increasing 
ground cover or redUcing erosion (Keeley et a!. 1981, Gautier 1983, Taskey et 
a!. 1989). The debate fueled research that extended into the 1990s (see next 
section). 

Seeded annual ryegrass could also have negative effects on pine seedling 
esta·~lishment (Griffin 1982), as had been shown for other pasture grass 
speCIes commonly used for post-fire seeding (Baron 1962). Massive wildfires 
in the Sierra Nevada, northern California, and southern Oregon in 1987 
resulted in millions of dollars being spent on emergency rehabilitation 
treatments and brought greater scrutiny to the methods employed. A number 
of investigations of treatment effectiveness were reported at a symposium in 
1988 (Berg 1989). Grass seeding was found to be highly variable in efficacy. 
Two papers attested to the effectiveness of straw mulch for erosion control 
(Gross et a!. 1989, Miles et a!. 1989), and others pointed out that post-fire 
logging, or 'salvage logging', could have beneficial effects on burned watersheds, 
especially when residual material, or 'slash', was left on the ground for soil 
protection (Barker 1989, Poff 1989). The symposium concluded with 
encouragement to develop better information to help managers make the best 
choices (MacDonald 1989). 

Channel Treatments 

Post-fire rehabilitation measures in stream channels continued to be 
dominated by engineering structures. More check dams were built in fire­
prone watersheds, especially in the steep mountains of southern California 
(Ruby 1973). Besides these semi-permanent channel traps, land managers and 
protection agencies also began experimenting with temporary low dam 
structures made of logs or straw bales (Miles et a!. 1989). Log dams, used in 
the forested northern part of the state, were fabricated from fire-killed trees 
taken directly off the bum site. Trees were felled, stacked to the desired height, 
secured with cables or bailing wire, and braced on the downstream face. It 
was of little consequence that these dams were semi-permeable, as long as 
they retain~d the coarser debris load. Straw bales - brought to the work site by 
trucks, heh~opters, and/ or hand crews - were used as large building blocks 
secured WIth fence posts and bailing wire to construct custom dams 
throughout California. Over time, both the logs and the straw would 
biodegrade, and the wedges of trapped sediment would slowly be released 

.>: 
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back into the channel system, and the longitudinal profile of the stream would 
return to a natural gradient (Miles et al. 1989). 

Channel clearing was a popular rehabilitation treatment throughout 
California in the 1970s and 1980s (Barro et al. 1989). Clearing was done to 
prevent freshly toppled fire-killed trees (and any pre-fire downed material) 
from organizing into impromptu dams that would temporarily restrain the 
rising waters. The fear was that these makeshift dams would eventually burst, 
creating a large flood that would be dangerous to any downstream resources 
or values at risk. However, this desire to qUickly and efficiently convey flo0d 
waters away from the burned area had to be balanced by the what often 
became the wholesale removal of the entire riparian ecosystem (Barro et al. 
1989). Ironically, in northern California, post-fire measures in stream channels 
began to include intentionally placing pieces of large woody debris into the 
drainages to create stability points in order to preserve or create new fish 
hab'itat (O'Connor and Ziemer 1989). 

Debris basins continued to be built at the caJ.1yon mouths of fire-prone 
watersheds to protect downstream communities from floods and/ or debris 
flows. Over 100 of these structures now exist in Los Angeles County alone. 
Besides these carefully engineered structures, agencies also began to use 
temporary earthen catchment basins on smaller stream tributaries to protect 

, high-value features, such as remote developments or critical habitat (USDA 
Forest Service 1992). Usually these earthen structures would not be 
maintained, and they would eventually be breached and revert back to a 
natural landscape after the post-fire emergency was over. Another new 
development to protect downstream human communities were deflection 
walls that, rather than creating a holding barrier, attempted to divert the 
sediment-laden flows away from property and infrastructure and back to the 
natural channels (Robichaud et al. 2000). 

CURRENT REHABILITATION APPROACHES 

From 1990 to the present, there has been a shift in the combinations of land, 
channel, road/trail, and protection/safety treatments that are selected by the 
BAER assessment teams. There has been a trend towards prescribing less 
hillslope treatments. Seeding has decreased in northern California, and is 
rarely prescribe'd in southern California. In southern California, aerial straw 
mulch and straw ~ttles have replaced seeding treatments. Straw mulching is 
also popular '1n northern California because of slower re-establishment of 
ground cover in the forested regions compared to the rapid recovery of 
southern California chaparral systems. Contour-felled logs, also known as log 
erosion barriers (LEBs), are used in northern California as a replacement for 
seeding where trees are available. Channel treatments are still being 
prescribed, although there is no clear consensus of their success or failure. 
More channel treatments are used in northern than in southern California 
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because of fishery issues. BAER teams are not only treating to prevent excess 
sediment, but are also attempting to reestablish fish habitat as well. More 
recently, there ha,s been greater emphasis on road and trail treatments, off­
highway vehicle containment, protection of cultural resources, and noxious 
weed treatments. Additionally; the importance of monitoring the success or 
failure of these treatments has been recognized, and studies have been 
implemented to assess or quantitatively evaluate their performance. 

Hillslope Treatments 

The source of much of the sediment of concern to land managers and 
protection agencies in the post-fire environment originates on the hillside 
slopes. The following rehabilitation techniques attempt to retain the soil 
material on the hillslopes and delay its delivery to the adjacent stream 
channels. 

Seeding 

Routine broadcast use of annual ryegrass for post-fire stabilization seeding 
has decreased tremendously since 1990. Research studies that pointed out its 
lack of effectiveness for erosion control and detrimental impacts on native 
plants, especially annual fire-followers, contributed to this trend (Conard 
et al. 1995, Wohlgemuth et al. 1998, Beyers 2004). The U.S. Department of 
Agriculture, Forest Service rarely seeds at all in southern California, where 
unpredictable rains and generally good natural vegetation recovery do not 
make seeding cost-effective. Other agencies have tried native seed mixes, with 
generally low success (Keeley et al. 1995). Land managers recognize the 
dilemma posed by seeding in forested areas of northern California, where loss 
of site productivity due to erosion is a major concern but successful grass 
growth may suppress natural tree seedling establishment (Griffith 1998, Van 
der Water 1998). The U.S. Department of Agriculture, Forest Service now uses 
non-reproducing cereal grains for most post-fire seeding, both to reduce 
erosion and to reduce establishment by invasive non-native plants. Seeding is 
done only in carefully-targeted areas, such as above roads or streams critical 
to the survival of rare fish. However, even cereals may displace native plant 
species and suppress tree seedlings in the short term (Keeley 2004). For more 
discussion of post-fire grass seeding, see Chapter 11. 

Contour-felled log erosion barriers 

Contour-felled logs erosion barriers are more apt to be used in northern 
California because of the predominance of forested ecosystems. In southern 
California, most of the area consumed by fire is in chaparral shrublands 
where logs are scarce. The 2003 southern California wildfires burned through 
over 290,000 ha of diverse plant communities dominated by chaparral, but 
coniferous forests comprised only 5 percent of the total area burned (Keeley et 
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al. 2004). In northern California, contour-felled logs have been minimally used 
and are not usually prescribed. Miles et al. (1989) monitored the effectiveness 
of the contour-felled logs on the Shasta-Trinity National Forest and found that 
the logs retained 3.6 to 15.1 Mg ha-1 of soil on site. They considered the 
sediment trapping efficiency low and 'costs of the treatment high (Robichaud 
et al. 2000). See Chapter 12 for further discussion. 

Aerial straw mulch, hand-placed straw, and wood mulch 

Due to its relatively low cost and history of success in reducing hillslope 
erosion, aerial straw mulching is one of the more popular hillslope erosion 
control treatment used in California. On the Grand Prix/Old Fire, the average 
cost including helicopter, personnel, straw, trucking, salary and per diem was 
US$1850 per hectare (Hubbert 2005,2006). Miles et al. (1989) reported 13.5 to 
22.5 Mg ha-1 reduction in soil erosion on the Shasta-Trinity National Forest 
when wheat straw was applied at 4.5 Mg ha-1

. 

The use of certified weed-free rice straw has replaced the use of other non­
certified straws such as wheat on most lands in California. The change to rice 
straw reflected the threat of invasive weed species that were being introduced 
in the applied straw. Rice straw is certified to be weed free, but monitoring by 
botanists after application have suggested otherwise. After the 2001 Darby 
Fire on the Stanislaus National Forest, 28 ha were aerial straw mulched with 
weed free rice straw and 25 ha of yellow starthistle (Centaurea solstitalis) were 
mapped the following year (Clines 2005). Yellow starthistle is of special 
concern as it is considered one of California's worst no?<ious weeds; infesting 
rangelands, pastures, hay fields, and orchards. In horses it can cause the fatal 
nervous disorder equine nigropallidal incephalomalacia, or I chewing 
disease. ' 

Following the Grand Prix/Old Fire of 2003, land managers monitored 
both aerial straw mulch arid hand-placed straw (Hubbert 2005, 2006). High 
winds contributed the most to straw mulch failure, either blowing the mulch 
offsite or piling the straw in deep clumps so that vegetation was suppressed. 
Poor application of the straw mulch also contributed to the failure of the 
material to provide cover. For best results, the large 330 kg hay bales were to 
be dropped from 60 m above the surface. However, because of the unevenness 
of the terrain, the bales were either dropped too low and did not break up 
completely resulting in piling or clumping; or were dropped too high resulting 
in uneven coverage and scattering beyond the projected treatment area. When 
applied correctly, straw mulch provides ground cover that reduces erosion 
and increases soil infiltration. Janicki and Grant (2002) noted that 330 kg bales 
did not break up as well as lighter 250 kg bales. Straw suppliers stated that 
bailing pressure, moisture content, and how fine the straw is chopped are 

- factors determining how well the straw breaks up and spreads (Janicki and 
Grant 2002). Additionally, on steep slopes, mulch may increase downstream 
peak flows by artificially decreasing storage capacity (lowering evaporation 
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and allowing greater infiltration), resulting in larger subsurface preferential 
flow. This may be an important factor in steep watersheds where soils are 
shallow and have developed on hard, unweathered bedrock. 

Hand-placement of straw is, more labor intensive than aerially applied 
straw, but usually results in better ground coverage. Good ground cover only 
holds true in areas that do not experience high winds. Most of the hand­
applied straw was blown off-site in the wind-prone areas of the Grand Prix/ 
Old Fire (Hubbert 2005, 2006). In areas where the straw was blown off-site, 
high impacts of foot traffic during straw application disturbed the soil surface 
increasing the soil erosion hazard. Ground cover approached 70 percent in 
areas that did not experience strong winds. 

Recent unpublished experimentation with wood mulches has shown it to 
be an effective treatment. If a tool is developed that helps apply the mulch in 
a cost effective way, it will gain in popularity, especially with the concerns of 
noxious plants in straw. 

Aerial hydromulching and road hydromulch 

Hydromulching combines a wood and paper fiber matrix with a non water­
soluble binder, mixes the ingredients into a slurry, and applies the mixture by 
high-pressure nozzles or by a helicopter. The intent of the mulch treatment is 
to bind the loose surface soil together, reducing detachment and transport by 
rainsplash and overland flow, while still allowing infiltration across the 
landscape. Aerial hydromulching is a relatively new treatment in California 
and because of its expense (-US$4000 per ha) has been used sparingly. A total 
of US$320,000 was spent for aerial hydromulch on the Curve Fire that 
occurred on the Angeles National Forest in 2002. After the 2003 Cedar Fire, 
aerial hydromulch was applied to watersheds located above a residential 
community to help reduce flood peaks and sediment yield downstream. A 
total of 444 ha were treated at a total cost of US$1,650,000. 

The use of road hydromulch (hydromulch applied through hoses from 
tanker trucks) has remained stable. Due to its expense and limited coverage 
range, it is mainly used to protect specific structures of high value. For 
example, following the Curve Fire, US$930,000 was spent protecting a state 
highway that provided access to the local mountains (Andressen 2002). 

Straw wattles (fiber rolls) 

The use of straw wattles has increased slightly in recent years. Straw wattles 
provide an alternative hillslope treatment when there are no trees available 
for contour-fellirig and seeding is undesirable. Implementation of the 
treatment is very labor intensive, and can be expensive if no volunteers are 
available. Although they weigh only 14 kg, they can be awkward and often 
take two people to transport them. With placement of the wattles, foot traffic is 
increased causing added disturbance to the soil surface. 
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Straw wattles were used following the 2003 Cedar Fire. Many of the fiber 
rolls were placed incorrectly across natural drainage positions. During the 
first year winter storm events, most of these failed (Hubbert 2005, 2006). 
Problems continued when the fiber rolls were repaired by backfilling the 
undercut portions with fresh hillslope material adjacent to the rolls. The next 
storm events removed this material as well, resulting in additional material 
being transported off-site (Hubbert 2005, 2006). Placement of the fiber rolls 
with their ends turned downslope also caused problems. Rills formed at the 
edge of many of the down-turned rolls, contributing to increased erosion the 
first year. This site experienced low rainfall, and therefore it was difficult to 
determine if the treatment was successful or not. Even after some intense rain 
events, there was little sediment accumulating behind the wattles (Hubbert 
2005, 2006). 

Channel Treatments 

Sediment can be stored in stream channels for many years awaiting a 
significant flushing event, especially in ephemeral watercourses. In the post­
fire environment, the extra water delivered from the burned hillsides swells 
the streams and can entrain and transport the stored sediment, threatening 
downstream infrastructure and habitat. The following treatments attempt to 
reduce the energy of the flowing water and retain some of the coarsest 
sediments behind barrier structures. 

Straw bale check dams 

Straw bale check dams have been used frequently in northern California, but 
much less so in southern California. Results have been mixed in evaluating 
the success or failure of the treatment. In a report by Miles et al. (1989),1300 
5-bale check dams were installed with only 13 percent failing the first year 
due to piping or undercutting. They considered straw bale check dams easy to 
install and highly effective (Robichaud et al. 2000). Collins and Johnston 
(1995) reported a 63 percent failure of 440 straw bale check dams 4 months 
following the 1991 Oakland Fire. After the Old Topanga Fire of 1993, Booker 
and Dietrich (1998) monitored straw check dams in 3 fire areas and reported 
that initially the dams had less than a 50 percent success ratio, with total 
failure by the 2nd year. They suggested that temporary structures should not 
be used in catchments with drainage areas greater than 1 ha. The straw bale 
dams failed because of piping, dam faces being undermined by flow over the 
structure, and destabilization of channel banks due to localized flow. 

More recently in southern California monitoring of straw bale check dams 
was conducted following the Grand Prix/Old Fire (Hubbert 2005,2006). After 
the Christmas Day storm of 2003, sediment completely filled to storage 
capacity all of the check dams. Once the check dams were filled with 
sediment, water was free to flow over the dams with no loss of energy. This 
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resulted in severe downcutting and gully formation below the dams. 
Following the second winter of above average precipitation, all the straw bale 
check dams failed. In many cases, no signs of the straw bales could be found. 
Under these circumstances, the treatment was 'considered a failure. 

Log check dams 

Log check dams have not been used extensively in California as a treatment. 
Miles et al. (1989) reported a 15 to 30 yr life expectancy for the dams, but that 
they were expensive and labor intensive to install. After the 2003 Piru Fire, it 
was recommended by the BAER implementation team to construct IQg check 
dams in the lower and upper portions of a creek that drained into a water 
supply reservoir. The lower drainage section of log check dams immediately 
filled with sediment following the 2003 Christmas Day storm. The log check 
dams began to fail during rain events in February 2004. The check dams that 
failed at the sides resulted in further cutting of the bank resulting in bank 
erosion and more sediment contributed to the channel (Hubbert 2005,2006). 
All of the check dams failed during the record-breaking rain events of the 2005 
winter. 

Engineering Techniques: Road, Stream Crossing, and 
Trail Treatments 

Due to the rapidly expanding urban interface and greater encroachment into 
wildlands, post-fire road and stream crossing treatments have continued to 
increase in both quantity and costs in California. On the 2001 Star Fire (El 
Dorado National Forest), costs for road and trail treatments were US$112,OOO 
out of a total BAER expenditure of US$190,100. Where road access was critical 
on the Piru Fire, costs for road treatments were US$2,136,500 out of a total of 

. US$2,324,000. In southern California, a large portion of treatment money was 
spent on road debris removal (dry ravel accumulation on roads), debris basin 
cleanouts, and culvert cleanouts. 

The use of storm patrols has also increased over the last five years. On the 
2004 Fred's Fire (El Dorado National Forest), US$69,900 out of a total of 
US$116,OOO was spent on storm patrols. Storm patrols were considered 
effective as pro-active maintenance operation to keep drainage structures free 
of sediment and debris. During the large storm events in the winter of 2004-
2005, storm patrols were less successful in preventing drainage structure 
failures on the Piru Fire. This was mairtly due to numerous landslides that 
blocked road access during the storms. 

After the Piru Fire, concrete construction barriers were placed at low water 
crossings to add structural integrity and stability to the road surface. In some 
cases,low water crossings were considered more desirable than a culvert pipe 
because of its ability to pass a large amount of debris without 'plugging'. 
However, low water crossing can become flooded and cause delays, so are 
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often used only on low traffic roads. By placing the barriers at a lower position 
below the road, it was believed that the vertical curve of the road could be 
lowered thus preventing flooding and failure. The barriers were originally 
placed too high with no spillway or low point. At first, water worked itself 
around the barriers. Subsequent storm events resulted in further erosion 
around the newly placed barriers, introducing up to a meter of new sediment. 
This was repaired by lowering and moving barriers nearer the bank, and 
creating a spillway toward the center. During the record setting rain events in 
the winter of the 2004-2005, all the barriers failed with some broken up and 
transported down stream for kilometers (Hubbert 2005,2006). 

Upgrading of culverts has continued to increase and has been considered 
a successful treatment. Trash rack installation has also increased and has 
been determined to be an effective treatment (Robichaud et al. 2000). 
Regrading rolling dips and repairing and replacing overside drains has 
continued to be an important and ongoing treatment. Rolling dips and 
overside drains are relatively inexpensive and fail often, but are considered to 
be effective in maintaining road access by removing water from the road. Of 
the road treatments prescribed on the Cedar Fire, more than 80 percent 
involved overside drains (Hubbert 2005,2006). 

The use of closure gates, removable pipe barriers, and fences that prevent 
P¥blic access has increased in recent years. Some closure gates are considered 
critical in protecting the public from rock fall, washouts, hazard trees, and 
flash flood events. Another important purpose of the gates is to limit public 
access of unauthorized off-highway vehicles (OHVs). The OHVs have become 
a major resource problem. On the Angeles and San Bernardino National 
Forests in southern California, thousands of hectares have been degraded 
from past OHV use because of the close proximity of 20 million people and 
130 krn of urban interface. After the Grand Prix/Old Fire, a total of 15 gates 
were installed. More than 5 krn of fencing was installed bordering roads on 
the-Cedar Fire (Hubbert 2005, 2006). 

Trail repair and maintenance has seen an increase in BAER prescriptions 
since 1990. Due to increased use of the wildlands by a rapidly growing 
population base, keeping hiking trails open and accessible to the public has 
gained in importance. In addition, some high profile trails generate a large 
public response to their needs for repair. 

No Treatment Alternative 

Over the last decade, it has become apparent that the capability of wildlands 
to recover without treatments needs to be documented. In the majority of cases, 
wildfires do not devastate forest or rangeland ecosystems and elim~ate 
sources of seed for desired tree and plant species. Wildfires do not sterilize 
soils. They do not delay or even preclude the reestablishment of plant cover, 
and they do not adversely impact the sustainability of ecosystems and the 
well-being of adjacent ecological communities. Moreover, only by monitoring 
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no treatment areas can the effectiveness of treatments be evaluated. Future 
BAER assessment teams unfamiliar with local recovery periods would also 
benefit from this monitoring information that documents the natural recovery. 
Monitoring burned but untreated hillslopes provides data for future 
determinations of potential erosion risk that may be useful for future post-fire 
treatment decisions. This could be critical as both erosion and sediment 
potential define the emergency, based on the values at risk (Napper 2005). 

LESSONS LEARNED AND FUTURE DIRECTIONS 

After nearly a century of post-fire emergency rehabilitation in California, the 
practice has become fairly well-developed and there have been many lessons 
learned along the way. It was once standard operating procedure to seed every 
bllrned hectare and erect heroic engineering works on every stream channel to 
protect all onsite and downstream values at risk. Today this is seen as both 
unnecessary and unrealistic. We now understand that fire is an integral part 
of nearly all ecosystems, and that the consequences of wildfire are not 
necessarily devastating to the environment. There are still critical natural 
resources and human development that need extra protection in the aftermath 
of fire, but these need to be clearly identified and specifically targeted with 
environmentally sensitive measures. If there are no resources or values at risk, 
no treatments are needed. After the 2003 southern California Fire Siege, only 
about 2 percent of the over 290,000 ha burned were treated with some form of 
emergency rehabilitation measures (Hubbert 2005). 

While human life and infrastructure are of paramount importance, 
emergency rehabilitation techniques must also be sensitive to environmental 
concerns. Grass seeding has been all but abandoned in California, as research 
has shown that rapidly growing non-native grasses do little to reduce erosion, 
provide no extra ground cover, and can be harmful to native species 
(Wohlgemuth et al. 1998). Radical ground disturbing measures whose impacts 
on the landscape can last much longer than the anticipated emergency are 
now discouraged. Engineering solutions can be prohibitively expensive and 
their protection results can not be guaranteed if the worst case scenario is 
realized and the design criteria are exceeded. Perhaps the most realistic 
protection measures from the consequences of post-fire flooding would be to 
redirect human development away from the canyon mouths and steep lands at 
the wildland/urban interface. 

Although post-fire rehabilitation and restoration have been practiced for 
many decades, land management and hazard protection agencies have not 
always done a thorough job of monitoring the success and effectiveness of 
rehabilitation practices (GAO 2003). Both the U.S. Department of Agriculture, 
Forest Service (Robichaud et a1. 2000) and the U.S. Department of Interior 
(Pyke and McArthur 2002) produced reports recommending that more 
research on and systematic monitoring and analysis of post-fire stabilization 
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methods be conducted. Results of some of that monitoring have been 
described in -this chapter and other chapters, and many other projects are 
being documented, often in internal agency reports. In the future these 
assessments need to consider not only the effectiveness of these practices but 
also their cost-effectiveness. 

The practice of post-fire logging or 'salvage logging', often considered 
part of post-fire rehabilitation or restoration, has come under greater scrutiny 
as well (McIver and Starr 2000, Donato et al. 2006). The US. Department of 
Agriculture, Forest Service and the US. Department of Interior Joint Fire 
Science research program has recently (2006) awarded several grants dealing 
with the impacts of current and past post-fire logging, including projects in 
Sierra Nevada and northern California (see http://jfsp.nifc.gov for a list of 
past and current projects). 

Perhaps the greatest challenge in the future to post-fire rehabilitation 
specialists lies in the realm of education. Vast knowledge and experience has 
accrued over the'past century, but the communication of this information has 
lagged. The general public needs to be aware that the emergency is not over 
when the flames are doused, understand that - even seemingly removed from 
the burned area - there can be serious consequences of flooding and 
sedimentation in the post-fire environment, and appreciate the possibilities 
and costs of emergency rehabilitation. More importantly, land managers and 
political decision-makers need to receive objective information from the 
rehabilitation specialists in order to make educated post-fire restoration 
choices. 
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