
CSIRO PUBLISHING

International Journal of Wildland Fire 2009, 18, 96–115 www.publish.csiro.au/journals/ijwf

Synthesis of sediment yields after wildland fire in different
rainfall regimes in the western United States

John A. MoodyA,B and Deborah A. MartinA

AUS Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303, USA.
Email: damartin@usgs.gov

BCorresponding author. Email: jamoody@usgs.gov

Abstract. Measurements of post-fire sediment erosion, transport, and deposition collected within 2 years of a wildfire
were compiled from the published literature (1927–2007) for sites across the western United States. Annual post-fire
sediment yields were computed and grouped into four measurement methods (hillslope point and plot measurements,
channel measurements of suspended-sediment and sediment erosion or deposition volumes). Post-fire sediment yields
for each method were then grouped into eight different rainfall regimes. Mean sediment yield from channels (240 t ha−1)
was significantly greater than from hillslopes (82 t ha−1). This indicated that on the time scale of wildfire (10–100 years)
channels were the primary sources of available sediment. A lack of correlation of sediment yield with topographic slope
and soil erodibility further suggested that sediment availability may be more important than slope or soil erodibility in
predicting post-fire sediment yields. The maximum post-fire sediment yields were comparable to long-term sediment
yields from major rivers of the world. Based on 80 years of data from the literature, wildfires have been an important
geomorphic agent of landscape change when linked with sufficient rainfall. These effects are limited in spatial scale to
the immediate burned area and to downstream channel corridors.

Introduction

Post-fire sediment yields have been measured in the western
United States since the early 1900s. Sediment yield is defined as
the mass of soil eroded per unit area and transported past a desig-
nated point at the outlet of a plot, hillslope, channel, or watershed
during 1 year (Mutchler et al. 1994). Hillslopes, in the present
study, are the nearly planar or convex segments between unchan-
nelized drainages and include rills (Moody and Kinner 2006).
Drainages are any concave features (sometimes called hollows
or swales), which concentrate and convey water downslope, but
do not necessarily have well-defined banks.

The effects of wildfires on soil erosion properties are spatially
variable (DeBano et al. 2005). When these effects are com-
bined with spatially and temporally variable rainfall, episodic
peaks of erosion create a punctuated sediment yield (Swanson
1981; Benda and Dunne 1997; Moody 2001; Benda et al. 2003)
greater than the ‘normal’background yield.This episodic supply
of sediment often is transported as slugs through the drainage
network or is deposited at various locations within the channel as
in-channel fans, floodplains, or terraces (Moody 2001; Moody
and Martin 2001b). Thus, the magnitudes of the post-fire sedi-
ment yield are critically dependent on the timing and location of
post-fire studies.

Sediment yield after wildfire is a function of static and
dynamic variables. Some examples of static variables are topo-
graphic slope and type of geologic terrain, which are nearly
constant over fire–erosion cycles (10–100 years). Dynamic vari-
ables can change over short periods of time (minutes to a few
years), such as the energy associated with each rain storm, the
duration of rain storms, the shear stress associated with runoff,

the actual contributing area of runoff causing erosion, and the
sediment availability (Swanson et al. 1998; Moody and Martin,
in press).

Sediment availability is a function of soil erodibility and
the volume of stored sediment on hillslopes and in channels.
Soil erodibility has been expressed as the ratio of the sediment
yield per unit flow variable. Several different flow variables have
been used, such as force per unit surface area or boundary shear
stress (Elliot et al. 1989; Flanagan and Nearing 1995; Moody
et al. 2005), unit stream power (Rose et al. 1983; Hairsine 1988;
Nearing et al. 1997), kinetic energy per unit area (Poesen and
Savat 1981), rain intensity raised to a power (Rose et al. 1983;
Elliot et al. 1989; Flanagan and Nearing 1995), and soil erodi-
bility factor or K-factor (Renard et al. 1997). The K-factor has
several limitations (Moody et al. 2005), but its distinct advantage
is that has been mapped over the entire western United States at
a resolution of 1 km2 (STATSGO database; Natural Resources
Conservation Service 2007).

Soil erodibility depends partly on burn severity (McNabb and
Swanson 1990; Neary et al. 2005; Moody et al. 2007), which has
been used to describe the effect of wildfire on soil properties.
Burn severity exhibits a mosaic pattern, indicating a wide range
of soil and vegetation conditions that also change rapidly with
time after a fire (months to years).The percentage of bare ground
is one metric used to determine such descriptive terms as high,
medium, or low burn severity (Robichaud and Waldrop 1994;
Benavides-Solorio and MacDonald 2005). Another metric is
fire-induced water repellency (DeBano 2000; Doerr et al. 2006),
which is discrete classes defined either by a range of water-
drop penetration times (Doerr 1998) or by a range of contact
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angles measured by using mixtures of water and alcohol (Letey
1969; Doerr 1998). A quantified burn severity metric (change in
the Normalized Burn Ratio) has been developed using remote
sensing products by Key and Benson (2005). The metric mea-
sures (1) above-ground consumption of living vegetation and
litter on the surface (obstructions to runoff before a fire); and
(2) change in amount of bare soil (an indicator of the heat effects
on biologic and physical properties of the soil). This quantified
burn severity has been used in a functional relation to predict the
runoff response from burned watersheds (Moody et al. 2007).
Quantified values of burn severity for the sites included in the
present study were unavailable, so that sediment yields in the
current paper could not be related to burn severity. However, a
caveat is that post-fire sediment yields may have a bias towards
high burn severities because these sites are perceived as being
the most likely to produce the greatest post-fire sediment yield.

The volume of stored sediment on hillslopes and in channels is
largely unknown and depends on the time scale of the accumula-
tion processes. On hillslopes, the volume is primarily a function
of the rate of production of soil from the bedrock (Heimsath
et al. 1997). In channels, the volume depends on the elapsed
time since the last substantial erosional event and on the rate of
replenishment by hillslope sediment transport processes. Each
process, such as rainfall-generated runoff (Poesen 1993), mass
wasting (Swanson 1981; Swanson et al. 1987), wind (Bagnold
1954; Whicker et al. 2006), and dry ravel (Krammes 1960; Rice
1982; Gabet 2003; Roering and Gerber 2005) has a different
time scale. Dry ravel is a dominant process in the mountains
of southern California (Anderson et al. 1959; Krammes 1965)
and in the coastal mountains of Oregon (Roering and Gerber
2005) where tectonism has produced, in these terrains, steep
slopes with easily erodible soil particles resting near the angle of
repose. Steep slopes decrease the critical shear stress necessary
for the initiation of motion of soil particles (Moody et al. 2005)
and increase the boundary shear stress of the flowing water.
Therefore, the potential to transport sediment is greater than in
other terrains, so that these conditions produce high sediment
availability (Milliman and Syvitski 1992).

Rainfall has kinetic and potential energy, which vary spatially
and temporally. Rainfall is transformed at raindrop-impact sites
(Hartley and Julien 1992) into overland flow. The impact energy
(proportional to the rainfall intensity) detaches some sediment
(Meyer and Harmon 1984; Gabet and Dunne 2003) and the dis-
charge or boundary shear stress (proportional to the depth of
flow) detaches and transports more sediment. Peak discharges
from burned watersheds (∼0.2 to 2000 ha) have been shown to
be a linear function of the 30-min maximum rainfall intensity, I30
and an I30 threshold of ∼10 mm h−1 (Moody and Martin 2001c;
Reneau and Kuyumjian 2004; Kunze and Stednick 2006; Moody
et al. 2007), and sediment yield from burned watersheds has been
found to depend on rainfall intensity. For example, in Montana,
the sediment yields were related to either I10 (10-min maximum
rainfall intensity) or I30 (Spigel and Robichaud 2007), and in
a burned watershed in Colorado, I30 explained 80–91% of the
variability in sediment yields (Kunze and Stednick 2006).

What proportion of sediment yield across a landscape can be
attributed to post-fire processes? A general conceptual frame-
work of geomorphic sensitivity (a function of gradient and
vegetation) in different rainfall regimes was linked by Swanson

(1981) to a fire index (a function of fire intensity, frequency, and
areal extent). He speculated that fire induced 70% of the total
sediment yield in steepland chaparral, 30% in Cascade Moun-
tain forest, and Robichaud (2000) estimated that in some regions,
over 60% of the total, long-term landscape sediment production
was fire-related. Post-fire erosion is a transient process. It has
been observed to be the greatest during the first year after a wild-
fire (Agee 1990; DeBano et al. 1998; Robichaud and Brown
1999) and elevated yields only persist for 4 to 7 years after a
wildfire (Moody and Martin 2001b; Shakesby and Doerr 2006).

Therefore, to determine the annual sediment yield linked to
wildfire, we have limited the present synthesis to sediment ero-
sion, transport, and deposition data that were collected within
2 years after a wildfire. These data were organized by rainfall
regimes, which have different seasonalities and rainfall inten-
sities. Normal background sediment yields (reported by the
references in this synthesis) are included for comparison with
sediment yields after wildfire.

Rainfall regimes

The United States can be divided into climatic regions with dif-
ferent seasonal rainfall types. These types are associated with
different air-mass sources (Hirschboeck 1991), which produce
six principal rainfall types (Kincer 1919; Smith 1994). Four of
the rainfall types (ARIZONA, PACIFIC, SUB-PACIFIC, and
PLAINS) are found in the western United States (Table 1). Some
of the boundaries for these rainfall types correspond to isoplu-
vial maps of rainfall intensity for different frequencies (1-, 2-,
5-, 10-, 25-, 50-, and 100-year recurrence intervals) published by
Hershfield (1961). The seasonal rainfall characteristics for each
erosion site were obtained from the Climatology of the United
States publications for each state (We used: 02, Arizona; 04,
California; 05, Colorado; 10, Idaho; 24, Montana; 26, Nevada;
29, New Mexico; 35, Oregon; 39, South Dakota; 45, Washing-
ton; and 48, Wyoming; see NOAA 2002) and from the Western
USA Climate Historical Summaries (Western Region Climate
Center, www.wrcc.dri.edu, accessed 18 January 2009).

An indicator of the rainfall intensity associated with relatively
frequent rain storms in burned areas in each climatic region is
the 2-year 30-min rainfall intensity. Values of the 2-year 30-min
rainfall intensity, I2 year

30 (mm h−1), for each erosion site were
obtained for those areas covered by NOAA’s (National Oceanic
andAtmosphericAdministration) National Weather Service Pre-
cipitation Frequency Data Server and from identical data in
the Rainfall Frequency Atlas of the United States (Hershfield
1961) for those states not covered by the Precipitation Fre-
quency Data Server. The rainfall intensities were separated into
four conditions (LOW, MEDIUM, HIGH, and EXTREME) by
using six intensities as lower boundaries (10, 15, 19, 20, 36, and
52 mm h−1). The combination of four seasonal rainfall types and
four rainfall intensity conditions defined 16 rainfall regimes of
which 10 are in the western United States (Table 1, Fig. 1).

Sediment-yield database

Many methods have been used to measure sediment yield after
wildfires for different lengths of time. Only those measurements
(70 references; 135 measurements) collected within 2 years of a

http://www.wrcc.dri.edu
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Table 1. Rainfall regimes in the western United States
Rainfall regimes are a combination of seasonal rainfall type and rainfall intensity condition. The observed ratio of summer to

winter precipitation is for the data presented in the current paper

Seasonal type Characteristics Seasonal ratio: Rainfall intensity 2-year, 30-min
summer rainfall : winter rainfall condition rainfall intensity

Lower Upper I 2 year
30 (mm h−1)

Lower Upper

ARIZONA Winter and summer wet 0.3 1.1 EXTREME >52 100
Spring dry HIGH >36 52
Fall (autumn) moist MEDIUM >20 36

PACIFIC Winter maximum 0.02 0.3 HIGH >36 52
Summer minimum MEDIUM >20 36

LOW >15 20

SUB-PACIFIC Winter wet 0.1 0.7 LOW >10 20
Spring moist
Summer and fall dry

PLAINS Winter minimum 0.6 2.0 EXTREME >52 100
Summer maximum HIGH >36 52

MEDIUM >19 36

wildfire (Fig. 1) are included in the present synthesis. The syn-
thesis does not include (1) extensive empirical predictions by
Rowe et al. (1949, 1954) for watersheds in southern California;
(2) other empirical predictive methods (Anderson 1974; Potts
et al. 1985; Legleiter et al. 2003); (3) data from prescribed fires
(Rowe 1948; DeBano and Conrad 1976; Bennett 1982; McNabb
and Swanson 1990; Covert et al. 2005); (4) data from rainfall
simulations (Benavides-Solorio and MacDonald 2001; Pierson
et al. 2001; Robichaud et al. 2007), or (5) data from some
control plots used to evaluate post-fire treatments (Robichaud
et al. 2000), which had insufficient information to locate the
study sites and to determine the associated variables such as
topographic slope, soil erodibility, and rainfall characteristics.

Measurement methods were separated into two groups based
on their location – Hillslopes and Channels. Hillslope meth-
ods were further divided into those methods that essentially
measured erosion at a point (erosion pin, erosion bridge, sur-
vey transect, or grid) and those that collected eroded sediment
from a plot (bounded hillslope plots, unbounded hillslope plots,
and silt fences). These are referred to as the Hillslope-point and
Hillslope-plot methods in the present paper. Channel methods
were divided into those methods that collected suspended sedi-
ment and those methods that measured sediment volumes (such
as behind dams, check dams, and debris basins, in alluvial fan
deposits, and from channel erosion). These are referred to as the
Channel-SS and Channel-volume methods.

These numerous measurement methods make comparison of
sediment yields difficult. In addition to the reasons listed by
Shakesby and Doerr (2006), the studies have used different tem-
poral and spatial scales. Measurement time scales in these studies
ranged over several orders of magnitude. For example, net ero-
sion after a single major storm was on the order of an hour; some
sediment data were collected daily, weekly or monthly; compos-
ite erosion from several storms was often published as yearly

values, as were the totals for daily suspended-sediment samples.
These methods also reflect spatial scales varying by many orders
of magnitude. For example, erosion pins measured changes in
height over an effective area of 0.0001 to 0.01 m2; hillslope plots
collected sediment from areas ranging from 1 to 1000 m2; and
dams and debris basins collected sediment from drainage areas
ranging from 106 to 108 m2. Another difficulty is that the meth-
ods used different measurement units. For example, the erosion
pin method uses height, the plot method uses mass, and the debris
basin method uses volume. Finally, the area that actually con-
tributes sediment is unknown. It probably depends on sediment
particle size in addition to such variables as the rainfall intensity,
soil erodibility, surface roughness, and connectivity of patches
with different erosional characteristics.

Aware of these limitations, but for the sake of comparison, all
the reported measurements of erosion and deposition were con-
verted to metric tons per hectare (t ha−1) on an annual basis. This
unit of sediment yield can be misleading, chiefly because erosion
is not uniformly distributed across the landscape as the unit sug-
gests. For example, erosion is often localized near or in channels
(Florsheim et al. 1991; Collins and Ketcham 2001; Moody and
Martin 2001a; Santi et al. 2007; Moody and Martin, in press)
and the actual magnitude of sediment yield will be substantially
greater if the area of the channel is used rather than the drainage
area. Several assumptions were required to compute these sedi-
ment yields: (1) if no specific sediment bulk density information
was given in the reference, then volumes were converted to mass
using a bulk density of 1700 kg m−3, which allows yields to be
easily revised if density information becomes available, and is
within the typical error (20%) associated with sediment erosion,
transport, and deposition data; (2) point measurements were usu-
ally along a transect of length L (m), and thus the contributing
area was equal to L2 (m2); and (3) the contributing area for
plot and volume measurements was equal to the entire area of a
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Fig. 1. Rainfall regimes in the western United States are a combination of rainfall types (ARIZONA, PACIFIC, SUB-PACIFIC, and
PLAINS) and the degree (LOW, MEDIUM, HIGH, and EXTREME) of the 2-year 30-min rainfall intensity, I2 year

30 . The boundaries
of the rainfall types are slightly modified from those originally delineated by Kincer (1919) to conform to the isopluvial maps for
the 2-year 30-min rainfall intensity, I2 year

30 , published by Hershfield (1961). The locations of sites with measurements of sediment
yield after wildfire published in the literature are shown as solid triangles, and sites with photographic evidence are shown as solid
circles. The boundaries for the PACIFIC-HIGH are small. One is located on the coast south of San Francisco and the second is near
Los Angeles but partially hidden by several solid triangles. The source of the hillshaded base map is the HYDRO1k database, US
Geological Survey, Center for Earth Resources Observation and Science (EROS).
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Fig. 2. The domain and range of the characteristics (rainfall intensity and ratio of summer rainfall : winter rainfall)
of the rainfall regimes where sediment yield has been measured after wildfires.

plot or the drainage area upstream from the measurement site.
Annual sediment yields are reported in the present synthesis for
comparison.

Some slopes associated with post-fire sediment yields were
reported in the references but many were not. Unknown slopes
were estimated from 1 : 24 000 topographic maps at the most
likely location (latitude and longitude) for the measurement site
as described in each reference. In some cases, insufficient infor-
mation was given to determine an exact location on a map, so
that the slope was estimated for a general area based on ancil-
lary information given in the reference. More recent publications
often had better information on location. Soil erodibility is avail-
able by STATSGO for 1-km2 grid cells (Natural Resources
Conservation Service 2007), and the values of soil erodibility
listed in the current synthesis correspond to the grid cell closest
to the latitude and longitude of the measurement site.

Results

Post-fire sediment yields have been measured in eight of the
10 rainfall regimes in the western United States. Most measure-
ments were in the PACIFIC-MEDIUM (56) and PACIFIC-HIGH
(11) rainfall regimes and the least in the ARIZONA-EXTREME
(2) and PLAINS-HIGH (1). Measurements cluster within dis-
tinct seasonal and rainfall intensity domains (Fig. 2). The
ARIZONA type had the greatest I2 year

30 (58 mm h−1) and the

SUB-PACIFIC type had the lowest I2 year
30 (13 mm h−1). Charac-

teristics of the PACIFIC seasonal rainfall type were low values
(0.024 to 0.27) of the seasonal ratio (summer rainfall : winter
rainfall) and a relatively wide range of I2 year

30 (20 to 37 mm h−1,

Table 2). Measurements reported from the PLAINS seasonal
rainfall type had the widest range of the seasonal ratio (0.69 to
2.0) and a relatively wide range of I 2 year

30 (19 to 42 mm h−1),
with the maximum in the Black Hills of South Dakota (Table 2).

Post-fire sediment yields (135 measurements) ranged over
five orders of magnitude.The greatest range was in the PACIFIC-
MEDIUM rainfall regime, where the minimum was 0.033 t ha−1

(Hillslope-plot) and the maximum was 2800 t ha−1 (Channel-
volume) following the Johnston Peak Fire in July 1960 (Doehring
1968). The minimum was essentially the same as the normal
background sediment yield (Table 3).The mean sediment yields,
listed in Table 3, range from 0.26 to 300 t ha−1 (Fig. 3), but if
they are regrouped by the four measurement methods, the range
is generally less (Fig. 4). For Channel-volume measurements,
the range is 14 to 300 t ha−1 with a mean of 240 t ha−1. For
Hillslope-point measurements the range is 37 to 160 t ha−1 with
a mean of 110 t ha−1, and for Hillslope-plot measurements the
range is 5.9 to 200 t ha−1 with a mean of 62 t ha−1. The range for
the Channel-SS measurements is over three orders of magnitude
(0.26 to 180 t ha−1) with a mean of 20 t ha−1.The maximum sed-
iment yield (180 t ha−1) was a single measurement representing
the total for 1 year (from the PLAINS-HIGH rainfall regime;
Galena Fire in the Black Hills of South Dakota; Gundarlahalli
1990; Fig. 4). If this value is excluded, then the mean sedi-
ment yield for the Channel-SS method is 9.2 t ha−1. When all
the sediment yields (135 measurements) are grouped by just the
measurement method reflecting the landscape location (channel
or hillslope), independent of rainfall regime, then the yields vary
by approximately one order of magnitude, indicating that conclu-
sions based on these mean sediment yields have less uncertainty.
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The mean sediment yields were 240, 110, 62, and 20 t ha−1 for
Channel-volume (60 measurements), Hillslope-point (25 mea-
surements), Hillslope-plot (34 measurements), and Channel-SS
methods (16 measurements), respectively.

Discussion

Dominant processes controlling sediment yield change with spa-
tial (Lane et al. 1997) and temporal scale (Schumm and Lichty
1965). Mixing the results for different temporal or spatial scales
together can obfuscate the actual relation between sediment yield
and drainage area (Walling 1983). Thus, results measured at one
scale cannot be scaled up or down unless the dominant process is
known to have the same or similar temporal and spatial scales of
interest. Moreover, the numerous methods used to measure post-
fire sediment yield have different intrinsic scales and this also
prevents one from making any consistent conclusions relative to
the scaling up or down issue. Therefore, if the sediment yields
given in the present synthesis are to be generalized or used at
other locations for modeling or making land management deci-
sions, then the yields should be used at the same scale as the
original measurements described by the references.

Methods used to measure post-fire sediment yields sample
different particle sizes, which affects the magnitude of the sed-
iment yields. Channel-SS data are biased toward fine-grained
sediment because of the limited size of the nozzle diameter
on suspended-sediment samplers (usually <10 mm, the intrinsic
scale of the method), and the fact that most samples are collected
during relatively low discharges when problems of clogging
and damage by extreme floods are much less. Suspended-
sediment particle sizes are smaller than those collected by
the Hillslope-point, Hillslope-plot, and Channel-volume meth-
ods. For example, in a post-fire study in granitic terrain, the
largest particle diameter of suspended sediment was ∼0.25 mm,
the largest diameter of eroded sediment from bounded plots
was 10 mm, and the largest particles deposited in the channel
were typically 10–100 mm. Under extreme flood conditions,
with sufficient shear stress, field observations indicated that
these channel particles were remobilized and transported in
suspension, but no suspended-sediment samples were ever col-
lected during these conditions (Martin and Moody 2001; Moody
2001; Moody and Martin 2001a). Probably as a result of the
dearth of suspended-sediment samples collected during flood
conditions, the magnitude of post-fire sediment yield based
on the Channel-SS method was approximately one order of
magnitude lower than yields based on the Channel-volume,
Hillslope-point, and Hillslope-plot methods. Another reason
may be that channel measurements of post-fire suspended sed-
iment are often made in first-order, head-water streams. These
streams are often underlain by resistant bedrock and have lower
suspended-sediment concentration than higher-order streams.
These first-order streams tend to be seasonal and transport less
suspended sediment per year than high-order perennial streams
(Hembree et al. 1952; Colby et al. 1956).

There were no significant correlations between sediment
yield and the static variable of slope and the dynamic variable of
soil erodibility. Slope measurements in many cases were within
a few metres of the site, whereas soil erodibility calculations
as reported in STATSGO represented an average over a 1-km2

area. Slopes for Channel-volume measurements were less exact
and represented an average over 1 to 10 km or were relief ratios
for entire watersheds and probably do not reflect the slope of
actual erosion sites. One reason for the lack of correlation may
be the inability to link slopes and soil erodibility with the actual
erosion sites. Soil erodibility is changed by temperature effects
from fire on the time scale of hours to days (Moody et al. 2005),
by changes in soil moisture (Van Burkalow 1945) on the time
scale of days to months, and by regrowth of vegetation on the
time scale of months to years. These different temporal changes
may create soil erodibility values that are quite different from
those given by the STATSGO database, which were used for the
correlation analysis.

Large sediment yields are not solely dependent on slope in
certain terrains. For example, in tectonic terrains where land-
forms undergo substantial alteration by earth movements such
as faulting and uplift, additional variables include seismic and
volcanic activity, fractured and brecciated rocks as well as steep,
unstable slopes (Milliman and Syvitski 1992; Montgomery and
Brandon 2002). These conditions exist in the PACIFIC seasonal
rainfall type and especially in the mountains of southern Califor-
nia and in the Oregon Coast Range. In these mountains, dry ravel
accounts for much of the background sediment yield (Ander-
son et al. 1959; Rice 1982; Wells 1987; Roering and Gerber
2005), which steadily replenishes, but does not completely refill
channels with sediment in the time interval between fires. Dry
ravel also supplies sediment during fires, when vegetation is
burned and sediment stored uphill from plant stems is released
into the channels (Krammes 1965; Wohlgemuth 2003; Roering
and Gerber 2005).

Only a weak correlation was found between sediment yield
and I2 year

30 . The best linear correlation (R2 = 0.54) was for the
ARIZONA seasonal rainfall type, which had the widest range
of I2 year

30 (37 to 58 mm h−1) compared with other seasonal rain-
fall types. The weak correlation is not surprising because the
I2 year
30 is a regional parameter. It was chosen only as an indi-

cator of rainfall intensities associated with relatively frequent
rain storms. Values of I2 year

30 do not represent the actual rainfall
intensity, I30, during an individual rainstorm, which may have a
larger range than that for I 2 year

30 . A correlation between rainfall
intensity and sediment yield may exist, but unfortunately, this
hypothesis could not be tested because only a few references
gave information on rainfall during the measurement period and
fewer still gave information on rainfall intensity. Measurements
of rainfall intensity, overland flow, and channel discharge are
needed in addition to measurements of sediment yield to pro-
vide a better understanding of sediment erosion, transport, and
deposition processes after wildfire.

Post-fire sediment yields from channels were greater than
the yield from hillslopes. This general regional result is based
on multiple sites in different rainfall regions across the west-
ern United States and represents a range of measurement time
scales. The mean sediment yield from channels was 240 t ha−1

(60 Channel-volume measurements) and the mean sediment
yield from the hillslopes was 82 t ha−1 (average of the com-
bined 25 Hillslope-point and 34 Hillslope-plot measurements).
The sediment yields based on the Channel-SS method have
not been included as part of the channel measurement mean
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Table 3. Summary of sediment yield after wildfire for rainfall regimes in western United States
Volume, measurements of eroded or deposited volumes including sediment excavation from behind dams or debris basin; SS, suspended-sediment sampling;

Point includes erosion pins, transects, erosion bridges or grids; Plot includes unbound plots, bounded plots, silt fences

Rainfall regime Measurement method n Annual sediment yield (t ha−1)

Minimum Maximum Median Mean

ARIZONA EXTREME Channel Volume 2 180 280 230 230
ARIZONA HIGH Channel SS 3 2.2 6.8 4.3 4.4
ARIZONA HIGH Channel Volume 4 21 200 80 97
ARIZONA HIGH Hillslope Point 5 52 370 86 169
ARIZONA MEDIUM Channel SS 2 3.7 60 32 32
ARIZONA MEDIUM Channel Volume 3 4.9 22 13 14
ARIZONA MEDIUM Hillslope Point 3 4.6 100 39 49
ARIZONA MEDIUM Hillslope Plot 1 200 200 200 200
ARIZONA Normal background yield 3 0.0030 0.16 0.070 0.078

PACIFIC HIGH Channel Volume 11 64 640 250 300
PACIFIC MEDIUM Channel Volume 25 0.14 2800 51 280
PACIFIC MEDIUM Hillslope Point 14 0.56 670 18 120
PACIFIC MEDIUM Hillslope Plot 17 0.033 490 32 97
PACIFIC Normal background yield 26 0.027 64 5.2 12

SUB-PACIFIC LOW Channel SS 3 0.12 0.40 0.26 0.26
SUB-PACIFIC LOW Channel Volume 5 0.75 440 39 180
SUB-PACIFIC LOW Hillslope Point 3 2.3 94 15 37
SUB-PACIFIC LOW Hillslope Plot 7 1.1 22 2.2 5.9
SUB-PACIFIC Normal background yield 4 0.0080 4.4 0.017 1.1

PLAINS HIGH Channel SS 1 180 180 180 180
PLAINS MEDIUM Channel SS 7 0.38 56 0.66 8.6
PLAINS MEDIUM Channel Volume 10 0.64 440 220 210
PLAINS MEDIUM Hillslope Plot 9 1.1 76 17 23
PLAINS Normal background yield 7 0.12 32 0.62 8.4

because of the bias toward fine-grained sediment, whereas the
Channel-volume, Hillslope-point and Hillslope-plot methods
represent similar coarse-grained particle sizes. This difference
between the mean sediment yield from channel and hillslopes
was strongly significant based on three statistical t-tests using
the original data (P = 0.007), log-transformed data (P < 0.001),
and a non-parametric Wilcoxon–Mann–Whitney rank sum test
(P << 0.001). Thus, in a broad sense across the western United
States, when these means are converted to percentages, ∼75%
of the coarse-grained sediment yield comes from channels and
25% comes from hillslopes.

Field observations and measurements support this regional
result. Field observations in the mountains of southern Califor-
nia, where dry ravel is a dominant hillslope sediment-transport
process, indicate that yields from channels are greater than yield
from hillslopes (P. M. Wohlgemuth, pers. comm., 2008). Dry
ravel transports sediment to the dry channels, where it is stored,
but available for remobilization and transport from the chan-
nel when sufficient water is delivered to the channels from the
hillslopes (Anderson et al. 1959; Wells 1987). Measurements in
the Front Range Mountains of Colorado indicated that ∼80%
of the sediment yield was from channels and ∼20% was from
hillslopes (Moody and Martin 2001b). Unchannelized drainages
were considered part of the channel network and not part of the
hillslope. This is because post-fire erosion frequently incises
these unchannelized drainages, increases the connectivity and
transport efficiency, expands the channelized network upslope

as headcuts following the drainages between hillslope segments
(Collins and Ketcham 2001; Moody and Kinner 2006), and
increases the drainage density (Collins and Ketcham 2001).
Thus, to apply the proportions of sediment yield from channels
and hillslopes to other landscapes, it is important to keep the
definitions of hillslope and channel in mind.

This general result suggests that post-fire sediment yield
increases as the spatial scale increases from hillslopes
(1–1000 m2) to the drainage area encompassing a channel net-
work (104–106 m2). This relation appears contrary to the general
notion that sediment yield decreases as drainage area increases
(Walling 1983; Reneau and Dietrich 1991; and references cited
therein; Walling and Webb 1996). However, previous work
(Trimble 1976) and more recent work (Dedkov and Moszherin
1992; Walling and Webb 1996) have shown that sediment yield
depends on the relative importance of channel and hillslope
erosion processes (Lane et al. 1997). When hillslope pro-
cesses dominate channel processes, sediment yield decreases
as drainage area increases. When channel processes dominate
hillslope processes, sediment yield increases as drainage area
increases. The latter is the case after wildfires. Floods follow-
ing fires remobilize sediment stored in the channel network
over several time scales. Normal hillslope erosion and trans-
port processes are slow and begin to refill gullies and channels
with sediment during the time interval between wildfires (recur-
rence intervals are on the order of 10–100 years) at a rate that
would require 1000–10 000 years (Welter 1995; Moody and
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Fig. 3. Standard box and whisker plot of the annual sediment yields organized by rainfall regimes. The lower and upper limits of the box are equal to the
first and third quartile and the difference equals the interquartile range, IQR. The horizontal line in the middle of the box equals the median value. Moderate
outliers between the inner fence (first quartile ± 1.5 IQR) and the outer fence (first quartile ± 3.0 IQR) are shown as solid circles and the extreme outliers
(those beyond the outer fence) are shown as open circles. The whiskers are drawn from the box to the highest and lowest values that lie within the inner fence.
The dark horizontal bar in each rainfall regime represents the background sediment yield based on the references in the present paper.
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Fig. 4. Standard box and whisker plot of the annual sediment yields organized by measurement method or landscape location. The methods are the:
Channel-SS (suspended sediment); Channel-volume (dams, check dams, debris basins, alluvial fan deposition, and channel erosion); Hillslope-point (erosion
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equals the median value. Moderate outliers between the inner fence (first quartile ± 1.5 IQR) and the outer fence (first quartile ± 3.0 IQR) are shown as solid
circles and the extreme outliers (those beyond the outer fence) are shown as open circles. The whiskers are drawn from the box to the highest and lowest
values that lie within the inner fence.
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Martin 2001b). However, if this slow process is interrupted by
a sequence of wildfire followed by substantial flooding, then
some fine-grained sediment eroded from hillslopes and greater
amounts of coarse-grained sediment eroded from drainages are
deposited in the channel network (San Dimas Experimental
Forest Staff 1954; Moody and Martin 2001a). This sediment
becomes a legacy for the next fire–flood sequence (Fig. 5) and
in the case of the Buffalo Creek Fire was estimated to have a resi-
dence time on the order of 300 years (Moody and Martin 2001b).
Thus, there is a lag time between when sediment is actively stored
in the channel and when it is remobilized by floods following
wildfires. Post-fire sediment eroded from channels is generally
older and coarser than sediment eroded from hillslopes.

Channels provide several sources of sediment. These are the
upstream extension of headcuts, lateral bank erosion, undermin-
ing and collapse of banks supporting stored colluvium, and the
channel bed (Florsheim et al. 1991; Collins and Ketcham 2001;
Santi et al. 2007; Moody et al. 2008). Direct measurements of
post-fire channel erosion have been made at three sites in each of
three rainfall regimes (SUB-PACIFIC, low; PACIFIC, Medium
and PLAINS, Medium) by Santi et al. (2007). The average ero-
sion was 2.5 m3 m−1 with values ranging up to 22.3 m3 m−1

in southern California. Similar values of channel erosion (1.1
and 3.2 m3 m−1) were measured in two watersheds in the Front
Range Mountains of Colorado (Moody and Martin 2001a).
These are equivalent to sediment yields of 220 and 440 t ha−1

(Table 3) if the drainage area is used. If channels are the source
of sediment, then the appropriate normalizing area is the wetted
surface area of the channel and not the drainage area encom-
passing the channel network. However, the necessary channel
geometry measurements are rarely published. For this last set of
measurements, the channel geometry is available for two water-
sheds in Spring Creek (subwatershedsW1165 andW960; Moody
and Martin 2001a; Moody and Kinner 2006). The sediment
yields normalized by the wetted surface area for the smallest
first order through the larger fourth order channels in W1165
are 17 000, 15 000, 5700 and 4300 t ha−1, and for the first, sec-
ond, and third order channels in W960, the yields are 32 000,
18 000 and 11 000 t ha−1. These sediment yields are two orders
of magnitude greater than the averaged yields normalized by
the drainage area (220 and 440 t ha−1 for W1165 and W960,
respectively). This example emphasizes that (1) channel erosion
is localized; (2) actual yields from channels are definitely much
greater than yields from hillslopes; and (3) the sediment yields
decreased as the wetted surface area increased. This last point
suggests that the relation between sediment yield and area is not
contrary to the general notion mentioned above, if the appro-
priate area is used to normalize the eroded sediment volume or
mass.

Maximum, mean post-fire sediment yields from each of the
eight different rainfall regimes (Table 3) are episodic in nature
but comparable in magnitude with long-term sediment yields
from major rivers of the world (120 to 535 t ha−1; Walling
and Webb 1996). Long-term yield is a metric for landscape
change, which includes ‘frequent flows of moderate magni-
tude’ (Wolman and Miller 1960, p. 60) that account for 50%
of the yield, and includes less frequent flows of ‘giant’ mag-
nitude that account for the other 50% of the yield. Similarly,
fire-related sediment yield is a metric of landscape change and

was two to four orders of magnitude greater than the short-term
background sediment yields reported for the duration of each
study included in the current synthesis. The fact that fire-related
sediment yields are comparable with long-term yields supports
the earlier speculation of Swanson (1981) and the statement by
Robichaud (2000) that fire is an important geomorphic agent in
the western United States. The landscape is altered at the spatial
scale affected by fire, but some geomorphic effects of the fire
extend beyond the immediate perimeter of the fire. For exam-
ple, the Buffalo Creek Fire burned an area of 4700 ha. Coarse-
and fine-grained sediment were transported outside this area but
trapped by a water-supply reservoir, Strontia Springs, with a con-
tributing area of 668 000 ha. Diversion and flood control dams
farther downstream trapped additional fine-grained sediment.
Without these dams, fire-related sediment would probably have
been transported and deposited as alluvial fans exiting the moun-
tains. However, this expanded geomorphic effect of fire is limited
to the channel corridor and not the entire drainage area. Inter-
estingly, post-fire sediment can affect the quality of the water
collected in reservoirs from much larger areas than that of the
immediate fire (Moody and Martin 2001a; Moody and Martin
2004; Lavine et al. 2006) and the growing awareness of this effect
is the basis for current efforts to identify potential impairment
of water supplies (LeMaster et al. 2007). The episodic nature of
post-fire erosion and transport coupled with vegetation regrowth
limits the temporal scale to a few years after a wildfire (Moody
and Martin 2001a).

Post-fire sediment yields depend on the timing of rainfall rel-
ative to the onset of the fire season, except in the case of dry
ravel released during a fire. The wildfire season in the western
United States begins in theARIZONA seasonal rainfall type (dry
desert and semi-desert regions of the south-west) and in the SUB-
PACIFIC seasonal rainfall type (eastern parts of Washington,
Oregon, and California, and in Nevada) in May or June (Kaye and
Swetnam 1999; Brown et al. 2001). In theARIZONA type, mon-
soons rains begin in July and August, whereas in SUB-PACIFIC,
these months are dry. The fire season then progresses into the
PACIFIC and PLAINS regions (Hostetler et al. 2005). Late-
season fires in the northern part of the PLAINS (for example,
2000 Valley Complex Fires in Montana, Spigel and Robichaud
2007) in July and August may be followed in a short time by
winter snow and freezing temperatures in September and Octo-
ber. Sediment yields are restricted to a shorter period than in
the other rainfall regimes such that there may be no erosion,
transport or deposition until spring temperatures thaw the soil.
Sediment yields will then continue at rates that depend on the
sequence and magnitude of the rainstorms and the regrowth of
the vegetation. In contrast, late-season fires in September and
October in the PACIFIC region of southern California are usu-
ally followed by the peak rainfall period during winter producing
substantial sediment yield.

At this point, it seems appropriate to speculate about how
climate change may affect sediment yields after wildfire. Some
climate analyses indicate that more precipitation is now falling as
rain instead of snow (Knowles et al. 2006). A shift from snow-
fall to rainfall could prolong the erosion season and increase
the sediment yields after fire in some rainfall regimes. More-
over, additional climate analysis suggests that precipitation has
increased by ∼10% across the United States, and importantly,
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(a)

(b)

Fig. 5. Examples of the legacy of sediment deposited after a fire–flood sequence. (a) Tributary alluvial fan on
7 August 1997. The fan was deposited during a flood approximately one month after the 1996 Buffalo Creek Fire
in Colorado was contained. It is on the right bank of Spring Creek and 780 m upstream from the confluence of
Spring Creek and the South Platte River. Flow in the main channel is from right to left. The person is ∼2 m tall. The
fan was truncated by later floods but left some fire-related sediment along the channel margin. (b) Main channel
terrace and floodplain on 18 May 2005. View is looking upstream in the main channel of Spring Creek burned by
the 1996 Buffalo Creek Fire in Colorado. This deposit of fire-related sediment was essentially an in-channel fan
and was ∼680 m upstream from the confluence of Spring Creek and the South Platte River. The coauthor is sitting
on a terrace surface deposited by a flood in 1998, which is on top of sediment deposited in 1996. The deposit was
not incised until the winter of 2004–05 when runoff left an ∼2 m high terrace as a legacy of fire-related sediment,
which may be remobilized by future extreme floods. The lower surface, corresponding to the foreground, has been
vegetated and stabilized and is becoming a floodplain but also is a legacy of fire-related sediment.
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approximately half of the increase is the result of an increase
in the intensity of rainstorms (Karl and Knight 1998; Schneider
2004). Thus, sediment erosion may increase in each of the rain-
fall regimes in response to changes in the timing and intensity
of rainfall, and consequently, these changes may alter the bal-
ance between soil production and the removal of soil by post-fire
erosion (Roering and Gerber 2005).

Climate change effects on post-fire sediment yields are
undoubtedly complex. Connections between climate and wild-
fire have been established and discussed by several authors
(Flannigan et al. 2000; Brown et al. 2004; Bachelet et al. 2007;
and references therein; Holden et al. 2007), but the predictions
of post-fire sediment yields based on these connections will
depend on the exact magnitude, frequency, duration, and the
sequence of the climate changes. The role of climate change
in influencing sediment yields has been considered in the sci-
entific literature (Bull 1991; Knox 1993; Favis-Mortlock and
Savabi 1996; Molnar 2001), though no systematic analyses have
been published of the complicated links between climate change,
vegetation, wildfire characteristics (such as frequency, size, and
severity), and post-fire sediment yields. It is beyond the scope
of the present synthesis to hypothesize about or model changes
in post-fire sediment yields under different climatic scenarios,
but it is certain that burned landscapes will exhibit complex
non-linear responses characterized by threshold, feedbacks, and
sensitivity (Schumm 1973; Phillips 2003; Peters and Havstad
2006; Moody and Martin, in press).

Summary and conclusions

A comprehensive dataset of post-fire sediment erosion, trans-
port, and deposition measurements (135) was compiled from
the published literature (1927–2007) for sites across the western
United States where measurements were made within 2 years
of a wildfire. Post-fire sediment yields were computed and
grouped into four measurement methods: Hillslope-point (ero-
sion pin, erosion bridge, survey transect, or grid), Hillslope-plot
(bounded hillslope plots, unbounded hillslope plots, and silt
fences), Channel-SS (suspended-sediment measurements), and
Channel-volume (dams, check dams, debris basins, alluvial-fan
deposition, and channel erosion). The computed sediment yields
were grouped according to rainfall regimes. Ten rainfall regimes
were defined by the combination of four rainfall types in the
western United States (ARIZONA, PACIFIC, SUB-PACIFIC,
and PLAINS) and four rainfall intensity conditions: LOW (10 to
20 mm h−1 and 15 to 20 mm h−1), MEDIUM (19 to 36 mm h−1

and 20 to 36 mm h−1), HIGH (36 to 52 mm h−1), and EXTREME
(>52 mm h−1). Post-fire annual sediment yields were calculated
for eight rainfall regimes.

When post-fire annual sediment yields (normalized by the
drainage area) were grouped by rainfall regimes, the magni-
tudes varied over five orders of magnitude. Sediment yields were
expected to vary across the rainfall regimes, but a major source
of variance was the different methods used within each rainfall
regime to measure post-fire sediment yield. Each measurement
method had different intrinsic temporal and spatial scales and
collected different sediment particle sizes. However, when the
mean sediment yields were grouped by measurement method
or landscape location (channel or hillslope), the sediment yields

only varied by approximately one order of magnitude, indicating
that the associated uncertainty was less for conclusions based on
these means.

A primary conclusion drawn from the grouping by landscape
location was that post-fire sediment yields from channels were
greater than yields from hillslopes across the western United
States. The mean post-fire sediment yield from channels was
240 t ha−1 and the yield from hillslopes was 82 t ha−1. The
dataset represents a robust sampling of channels and hillslopes
from multiple burned areas and from different rainfall regimes
such that the difference between the channel and hillslope post-
fire sediment yields was strongly significant (P < 0.007). Thus,
∼75% of the post-fire sediment yield comes from channels and
25% comes from hillslopes; however, most of the runoff, which
erodes sediment from the channels, comes from the hillslopes.
Post-fire sediment yields did not show a significant correlation
with topographic slope or soil erodibility. This suggests that
sediment availability may be more important than slope or soil
erodibility in predicting post-fire sediment yields. These results
can be used to guide the prioritization of post-fire land manage-
ment policies and they identify the need to develop techniques
to measure sediment availability for use in predictive models of
post-fire sediment yield.

Although the nature of post-fire sediment yields is localized
and episodic, the maximum, mean post-fire sediment yields in
the rainfall regimes of the western United States were compa-
rable with long-term sediment yields from major rivers of the
world. This result, based on data collected over 80 years, sug-
gests that wildfires have been an important geomorphic agent
of landscape change when linked with sufficient rainfall. Possi-
ble changes in the rainfall associated with climate change in the
future may increase the geomorphic impact of wildfire on the
landscape. The geomorphic effect of wildfire is limited in spatial
scale to the immediate burned area and to the channel corridor
downstream; however, this effect may increase if the frequency,
size, and severity of wildfires continue to increase in the future.

We encourage authors to include quantitative data related to
burn severity, rainfall intensity, overland flow discharge, channel
geometry, and channel discharge in future publications on sedi-
ment erosion, transport, and deposition after wildfire. This type
of data will facilitate understanding the complex links between
climate, rainfall, vegetation, wildfire, and subsequent yields and
will aid in the development of physically based models designed
to predict sediment yields and their associated uncertainties.
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