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EVALUATING PRE- AND POST-FIRE PEAK DISCHARGE PREDICTIONS
ACROSS WESTERN U.S. WATERSHEDS'

Alicia M. Kinoshita, Terri S. Hogue, and Carolyn Napper®

ABSTRACT: This study reviews five models commonly used in post-fire hydrologic assessments: the Rowe Coun-
tryman and Storey (RCS), United States Geological Survey (USGS) Linear Regression Equations, USDA Windows
Technical Release 55 (USDA TR-55), Wildcat5, and U.S. Army Corps of Engineers (USACE) Hydrologic Modeling
System (HEC-HMS). The models are applied to eight diverse basins in the western United States (U.S.) (Arizona,
California, Colorado, Montana, and Washington) affected by wildfires and assessed by input parameters, calibra-
tion methods, model constraints, and performance. No one model is versatile enough for application to all study
sites. Results show inconsistency between model predictions for events across the sites and less confidence with
larger return periods (25- and 50-year events) and post-fire predictions. The RCS method performs well, but appli-
cation is limited to southern California. The USGS linear regression model has wider regional application, but
performance is less reliable at the large recurrence intervals and post-fire predictions are reliant on a subjective
modifier. Of the three curve number-based models, Wildcat5 performs best overall without calibration, whereas
the calibrated TR-55 and HEC-HMS models show significant improvement in pre-fire predictions. Results from
our study provide information and guidance to ultimately improve model selection for post-fire prediction and
encourage uniform parameter acquisition and calibration across the western U.S.
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INTRODUCTION development and human populations (Radeloff et al.,
2005; Cannon and DeGraff, 2009). Climate change
and increasing wildfire frequency add to post-fire
hydrologic variability (Westerling et al., 2006; Trouet

et al., 2008; Cannon and DeGraff, 2009), and the abil-

Wildfires alter land surfaces, land-atmosphere
interactions, and hydrologic response (De Bano, 2000;

Moody and Martin, 2001; Beringer et al., 2003; Ice
et al., 2004; Prater and DeLucia, 2006; Pierson et al.,
2008; Cydzik and Hogue, 2009; Jung et al., 2009;
Montes-Helu et al., 2009; Burke et al., 2010). Wild-
fires are also occurring more frequently at the
wildland-urban interface and impose threats on

ity to accurately predict post-fire flood potential is
vital for both human safety and effective and efficient
management of state and regional resources.

The U.S. Department of Agriculture (USDA), U.S.
Forest Service (USFS), and Burn Area Emergency
Response (BAER) teams are deployed, as soon as
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conditions permit, to determine values at risk across
the forests. BAER teams are also responsible for
hydrologic predictions and focus on estimating poten-
tial increases in post-fire runoff and sediment that
place downstream values at risk or threaten human
life and natural resources. Hydrologic assessments
undertaken by BAER teams vary by region, fire, mod-
eler, accessibility, and ease of use (Foltz et al., 2009),
and generally there is a lack of consistency in post-
fire hydrologic assessments. In addition, performance
of many of the applied hydrologic models has not
been well documented within the post-fire context.

Numerous models and techniques are available to
predict post-fire peak discharge, varying significantly
in complexity and ease of use. The operational BAER
teams typically use empirical, event-based models to
accommodate rapid assessment. A USFS survey on
BAER models (Napper, 2010) found out that 26% of
modelers use the U.S. Geological Survey (USGS)
Linear Regression Model, 10% wuse the USDA
Windows Technical Release 55 (TR-55), 23% use
Curve Number (CN) methods (no specific model plat-
form mentioned), 9% use Wildcat4 or Wildcat5, 20%
use the Water Erosion Prediction Project (WEPP), 2%
use the Fire Enhanced Runoff and Gully Initiation
(FERGI), 8% use the Rowe Countryman and Storey
(RCS), and 2% use the U.S. Army Corps of Engineers
(USACE) and Hydrologic Modeling System (HEC-
HMS) model. The BAER survey brings attention to
the wide range of models being utilized by the wild-
fire community and the mneed for systematic
approaches in their application (i.e., gathering
parameters and adjusting models for post-fire condi-
tions). In general, the BAER models have been exten-
sively utilized and validated over various watersheds.
However, they are rarely evaluated under post-fire
conditions, where application of the models often falls
outside the developed range of parameters resulting
in unreliable predictions (Cydzik and Hogue, 2009;
Chen et al., 2013). Models chosen for review in the
current study include the RCS, USGS Linear Regres-
sion Equations, TR-55, Wildcat5, and HEC-HMS.
Although other empirical equations or methods have
been developed that utilize peak discharge measure-
ments from burned watersheds (Schaffner and Reed,
2005; Reed and Schaffner, 2007; Reed et al., 2012;
Moody, 2012), the current assessment focuses on a
suite of models routinely used and recommended by
our USFS collaborators.

The RCS method consists of LUTs for discharge
and erosion rates for southern Californian water-
sheds based on in situ observations (Rowe et al.,
1949). Notable fires such as the 2003 Old and Grand
Prix Fires, and the 2009 Station Fire in California,
utilized the RCS method for BAER post-fire hydrolog-
ical predictions and management assessments (Bid-
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dinger et al., 2003; Moore et al., 2009). The USGS
Linear Regression Equations have been used to esti-
mate peak discharge across the United States (U.S.),
primarily under pre-fire conditions. The USGS
method uses relations between discharge and climatic
and physical characteristics of the contributing area
and is often applied to ungaged sites where there is
no observational data. The regression equations have
been developed for each state and have been recently
integrated into an interactive Geographic Information
Systems (GIS) framework (U.S. Geological Survey,
2013). A modifier has also been developed to utilize
the established equations for post-fire predictions
(Foltz et al., 2009).

The TR-55, Wildcat5, and HEC-HMS models uti-
lize CN methodology, but vary by model parameters,
constraints, and developed interface. Several of the
models have been previously applied to notable fires
such as the 2002 Hayman Fire (Wildcat4) (Robichaud
et al., 2003) and 2000 Valley-Complex (Soil Conserva-
tion Service (SCS) CN method) (Burned Area Emer-
gency Rehabilitation Team, Valley Fire Complex,
2000), and the 2003 Old Fire (HEC-HMS) (Cydzik
and Hogue, 2009). The CN method is noted for hav-
ing more uncertainty in predictions when estimating
at the extremes, especially during low-flow and low
rainfall conditions (Hawkins, 1975). Cydzik and
Hogue (2009) analyzed the HEC-HMS under both
pre- and post-fire conditions. Results showed signifi-
cant changes from pre- to post-fire parameter values
as well as trends in several variables (initial abstrac-
tions, CN, and lag time) over a three-year recovery
period. The CN returned to pre-fire values by the end
of the second post-fire year, initial abstractions
reached pre-fire conditions after the third rainy sea-
son, and the lag time remained lower than pre-fire
values throughout the three-year study period
(Cydzik and Hogue, 2009; Chen et al., 2013).

The current study undertakes one of the first
model intercomparison studies for a range of event-
based hydrologic models utilized under both pre- and
post-fire watershed conditions. We outline the various
modeling platforms, parameter acquisition (inputs
and outputs), and necessary parameter alterations
for pre- and post-fire simulations. Specifically, the
objectives of our work are to: (1) review a range of
event-based hydrologic models utilized in post-fire
modeling of peak flow events; (2) evaluate the models’
performance across a range of diverse fire sites,
including Arizona, southern and northern California,
Colorado, Montana, and Washington; (3) demonstrate
potential improvements in calibrated models where
data are available; and (4) provide guidance on model
constraints and application in diverse post-fire
regimes. Ultimately, we hope to facilitate a uniform
framework and calibration approach for improved
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post-fire hydrologic practices and modeling assess-

ments across multijurisdictional fires in the western
U.S.

STUDY MODELS

Generally, the tested models include geomorphic
parameters that describe the physical watershed
including size, slope, or lengths (Table 1). Forcing data
typically includes precipitation, storm intensity, or
storm duration. In the current study, smaller basins
(<13 km?) are modeled as lumped (basin inputs and
parameter are uniform) and larger watersheds are dis-
tributed (basin inputs and parameters vary by subba-
sin). In both cases, modeled basin outputs include
either peak discharge (Qpk) or a complete discharge
hydrograph at the outlet. After pre-fire models are
established, models are altered using published litera-
ture or documentation to create post-fire models. It is
important to note that the tested hydrologic models do
not include algorithms for sediment or debris bulking
factors. Bulking factors increase the clear water dis-
charge to represent the high concentrations of sediment
typical of post-fire conditions (Gusman et al., 2011).

Rowe Countryman and Storey

The RCS is a method for estimating flood peaks and
erosion for basins within the national forests of south-
ern California (Rowe et al., 1949). The RCS establishes
reasonable estimates through detailed LUTs of the
average frequency and size of peak flow events and
erosion rates associated with normal (unburned) condi-
tions, the effect of burned vegetation, and the recovery
of vegetation and hydrology with respect to time. Rowe
et al. (1949) undertook extensive observations across
southern California watersheds (along the coast from
the Mexican border to San Luis Obispo) and developed

relations for peak discharge frequencies for over 250
watersheds within five zones. Relations were then
established between storm precipitation and post-fire
peak discharge for watersheds in each specific storm
zone and determined the changes in these flows for
subsequent post-fire years. The method is still widely
used for runoff estimates in southern Californian
watersheds.

USGS Linear Regression Equations

The USGS Linear Regression Equations are devel-
oped for estimating 2-, 5-, 10-, 25-, 50-, and occasion-
ally 100-year peak discharge for ungaged sites across
the U.S., generally for pre-fire conditions. The least
squares regression equations are produced for broad
regions using long-term discharge observations. In
the current study, we implement regression equations
previously developed for Region 14 (Arizona), Sierra
(California), South Coast (California), Mountain (Col-
orado), Upper Yellowstone Central Mountain (Mon-
tana), and Region 4 (Washington). The general
regional equations and variables used in this study
are outlined below (coefficients provided in Table 2;
formulas developed for English units):

Region 14, Arizona (Thomas et al., 1997):
Q; = FA“(E/1000)°

Sierra, California (Waananen and Crippen, 1977):
Q, = FA"P°H"

South Coast, California (Waananen and Crippen,
1977): @, = kA“P?

Mountain, Colorado (Vaill, 2000): @, = RAXS + 1)°

Upper Yellowstone Central Mountain, Montana
(Omang, 1992): Q, = RA“(E/1000)°(HE+10)°

Region 4, Washington (Sumioka et al., 1998): @, is
the RA“P”

where ¢ is the recurrence interval years, A is the
watershed area [mi?], P is the mean annual
precipitation [in], H is the altitude index (average of

TABLE 1. Summary of Models Utilized in the Current Study, Including Model Developer, Platform for Application,
Constraints on Watershed Size, and Model Outputs.

Model Creator Platform Most Suitable Watershed Size Outputs
RCS Rowe Countryman Storey  Look-up tables (LUTSs) N/A Qpk, sediment
USGS Linear Regression USGS Regional USGS >13 km? Qpk
regression equations
Curve Number (CN) Methods
TR-55 USDA NRCS WinTR-55 <65 km? Qpk and time,
hydrograph
Wildcat 5 USFS, Stream Team, Microsoft Excel macros <13 km? Qpk and time,
Fort Collins, Colorado (2003 or later) hydrograph
USACE HEC-HMS U.S. Army Corps Windows Flexible Storm hydrograph,

Qpk and time
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TABLE 2. USGS Linear Regression Models and Coefficients for Pre-Fire Conditions (developed for English units) for Each Recurrence

Interval Used in the Current Study, Where ¢ Is the Recurrence Interval [years], A Is the Watershed Area [mi®], P Is the Mean Annual

Precipitation [in], H Is the Altitude Index (average of elevations at points 10 and 85% along the channel in thousands of feet), E Is the
Mean Basin Elevation [ft], S Is the Slope, and HE Is the High Elevation Index (percentage of the total basin area above 6,000 ft).

State Region Sites Equation t=2 t=5 t=10 t=25 t =50
Arizona Region 14 Frye Q, = FA%(E/1000)° k=0.124, k = 0.629, k=143, k = 3.08, k=4.75,
a = 0.845, a = 0.807, a = 0.786, a = 0.768, a = 0.758,
b=1.44 b=1.12 b = 0.958 b=0.811 b=10.732
California Sierra Bull #3, Q, = FA“P°H* k=0.24, k =1.20, k =263, k = 6.55, k=104,
Rock a = 0.88, a = 0.82, a = 0.80, a=0.79, a = 0.78,
b = 1.58, b=1.317, b=1.25, b=112, b = 1.06,
c=-0.80 c=-0.64 c=-0.58 c=-0.52 c=-0.48
California South coast Arroyo, Q, = RA°P,, k=0.14, k =0.40, k = 0.63, k =1.10, k =1.50,
Devil a=0.72, a=0.77, a=0.79, a=0.81, a =0.82,
b=1.62 b=1.69 b=175 b=1.81 b=1.85
Colorado Mountain Hayman . = RA%(S + 1)° k=11.0, k=179, k =23.0, k=294, k =34.5,
a = 0.663, a = 0.677, a = 0.685, a = 0.695, a = 0.700,
b = 3.465 b=2.739 b =2.364 b =2.004 b=1.768
Montana Upper Fridley Q, = FA%(E/1000)° k=0.177, k = 0.960, k=2T71, k = 8.54, k =19.0,
Yellowstone x (HE + 10)° a = 0.85, a =0.79, a=0.77, a =0.74, a=0.72,
Central b = 3.57, b = 3.44, b = 3.36, b = 3.16, b =2.95,
mountain c=—-0.57 c=-0.82 c=-0.94 c=-1.03 c=-1.05
Washington Region 4 Andrews Q, = RA“Pb k =0.025, N/A k =0.179, k=0.341, k = 0.505,
a = 0.880, a=0856, a=0.850, a=0.845,
b=1.170 b =137 b=126 b=1.20

elevations at points 10 and 85% along the channel in
thousands of feet), E is the mean basin elevation [ft], S
is the slope, and HE is the basin high elevation index
(percentage of the total basin area above 6,000 ft).

Curve Number Models

The CN approach was developed by the USDA Nat-
ural Resources Conservation Service (NRCS) to esti-
mate runoff volume primarily from agricultural
settings (U.S. Department of Agriculture, Soil Conser-
vation Service, 1991). The SCS CN method considers
rainfall, NRCS hydrologic soil groups, land cover type,
treatment and conservation practices, hydrologic con-
ditions, and topography. The selected CN value is a
function of land cover type, soil properties, and ante-
cedent moisture conditions, which can be estimated
from LUTSs or geospatial datasets. The SCS method
considers four hydrologic soil groups (A, B, C, and D),
categorized by similar structure, texture, infiltration,
and runoff characteristics (i.e., degree of swelling when
saturated, transmission rate of water) (U.S. Depart-
ment of Agriculture, Natural Resources Conservation
Service, 2007). Soil group runoff potential increases
from low (A) to high (D) and decreases from free water
transmission (A) to restricted water transmission (D).
The TR-55 models accommodate three predefined rain-
fall distributions types — Types I, IA, and III, which
are based on climate zones across the U.S. (U.S.
Department of Agriculture, Natural Resources Conser-
vation Service, 2009). Types I and IA represent the
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Pacific maritime climate (wet winters and dry sum-
mers). Type IA is the most gradual rainfall distribution
type and Types II and III represent similar distribu-
tions of intense, short duration rainfall.

The depth of runoff (P,) is estimated using the CN
and cumulative precipitation for a specified duration
and the empirical formulation of the uniform loss
applied throughout a storm includes (Mays, 2001):

1000

S CN

10, (1)

where S is the storage (potential maximum retention)
and CN is the estimated CN value.

I, = (0.1)S, 2)

where I, is the initial abstractions [in] (Baltas et al.,
2007).

T P-I,+8S’

where P, is the precipitation excess (runoff depth) [in]
and P is the total storm precipitation [in]. For consis-
tency, the SCS Dimensionless Unit Hydrograph (UH),
an empirical method used to route flow to a designated
output location or design point, is selected for use in the
Wildcat5, TR-55, and the HEC-HMS models. The SCS
UH method uses time of concentration, T, which is
defined as the time for a particle of water to travel from
the furthest point of the watershed to the design point
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(U.S. Department of Agriculture, Soil Conservation
Service, 1991; Mays, 2001):

_L%%(S +1)°7 @
¢~ T1140(Y05)

where T is the time of concentration [hours], L is the
watershed length [ft], and Y is the average watershed
slope [%]. Lag time is subsequently defined as:

Ty, = 0.6T., (5)

where T7, is the lag time [hours], which is the time from
the center of mass of a rainfall event to the time of peak
discharge. The time to peak (T},) is defined as:

T, = 0.67T,, (6)

where T, is the time to peak [hours]; which is the
time from the beginning of rainfall to the time of
peak discharge. Base time (7T},) is defined as:

T, = 2.67T,, (7)

where T} is the base time [hours], which is the dura-
tion of the storm response. Finally, peak discharge
(Qp) is defined as:

A
Qp = 484T—p, (8)
where @, is the peak discharge [cfs] and A is the
watershed area [mi?].

Wildcat5

The Wildcat5 is used extensively in U.S. Forest Ser-
vice applications to wildlands (Hawkins and Munoz,
2011) and is applicable to watersheds <13 km? The
model is spreadsheet based (Microsoft Office Excel
2003 or later) whose inputs include storm characteris-
tics, watershed soil and cover (to calculate runoff
depths), timing parameters (related to time of concen-
tration), and unit hydrograph selection. The outputs
include a calculated hydrograph and peak runoff
(Hawkins and Munoz, 2011).

TR-55

TR-55 is typically run for small watersheds
(<65 km?) and is capable of accommodating up to 10
homogenous subbasins. The model calculates storm
runoff volume, peakflow rate, hydrograph, and storage
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volume for stormwater management (U.S. Department
of Agriculture, Natural Resources Conservation Ser-
vice, 2009). Storm data required by TR-55 include: rain-
fall return period [year], 24-h rainfall amount [inch],
and rainfall distribution type (function of rainfall inten-
sity). The TR-55 uses the Muskingum-Cunge for rout-
ing with time of concentration manually inputted or
calculated using the following parameters: length [ft],
slope [ft/s], surface (Manning’s n), and velocity [ft/s], for
sheet, shallow concentrated, and channel flow types.
Using the NOAA Atlas of precipitation to determine
24-h storm depths for each recurrence interval, the
TR-55 outputs corresponding peak streamflow values.

HEC-HMS

The HEC-HMS is a modular framework developed
by the USACE. The CN is one of several available
methodologies that can be used to simulate precipita-
tion-runoff processes based on physiographic data
within watershed systems. The model can be used to
simulate observed events over a system (user-defined
meteorological forcing) or to simulate predefined
design storms. The HEC-HMS has a more complex gra-
phical user interface (GUI) interface than other tested
models; however, the modeling framework includes
options for numerous physical configurations of a
watershed (subbasin, reach, junction, etc.), subbasin
loss methods (SCS CN selected for this study), runoff
transformation methods (SCS wunit hydrograph
selected), and open-channel routing methods (Muskin-
gum-Cunge selected) (U.S. Army Corps of Engineers,
2010). The HEC-HMS model also has options to include
base flow in runoff prediction.

Post-Fire Modifiers

To simulate post-fire conditions, model parameters
are adjusted to reflect changes in watershed properties.

Rowe Countryman and Storey. LUTs for the
RCS method incorporate post-fire peak flow and ero-
sion rates for time intervals up to 70 years after fire.

USGS Linear Regression Equations. The
USGS uses estimated modifiers to scale pre-fire runoff
values to post-fire runoff values (Foltz et al., 2009).
The modifier is a function of the soil burn severity and
a parameter that accounts for increased runoff. The
pre-fire @, is then multiplied by the modifier to pro-
duce an estimate of post-fire runoff for each return
interval. There are no standard guidelines to deter-
mine post-fire modifiers; BAER team members utilize
their own methods, varying by region, model, or
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modeler (Foltz et al., 2009). For this study, the modi-
fier is calculated using Foltz et al. (2009):

. (Ag +An)
Modifier = 1+ | (%ROjpcrease) * T Ar | 9)

where Ay is the area of high soil burn severity [mi?],
Ay is the area of moderate soil burn severity [mi?], At
is the total watershed area [mi%], and %RO;ncrense 1S
the percent of runoff increase, post-fire [%].

Methods for estimating the %RO increase for the
post-fire year have not been well defined. In the cur-
rent study, the %RO increase is estimated using long-
term (over 40 years) streamflow records, BAER
reports, or previously published studies (Benavides-
Solorio and MacDonald, 2001; Biddinger et al., 2003;
Brandow et al., 2003). Regional watersheds with pre-
and post-fire discharge records (Frye Creek, Arizona
(USGS gage 9460150), Arroyo Seco, California (USGS
gage 11098000), Devil Canyon, California (USGS gage
11063680), and Andrews Creek, Washington (USGS
gage 12447390)) were used to estimate a %RO parame-
ter. The a priori estimation of the %RO parameter has
significant influence on the final post-fire modifier and
poor definition of this value ultimately results in
higher uncertainty in post-fire predictions. Reducing
the uncertainty in the modifier is outside the scope of
this study, but is a subject for future investigation.

Curve Number Models. To adjust the CN param-
eter for post-fire land cover conditions, the following
guidelines (Higginson and Jarnecke, 2007) are utilized
(note that the maximum CN value is 100):

Low soil burn severity CN = pre-fire CN + 5
(10)

Moderate soil burn severity CN= pre-fire CN
+10
(11)

High soil burn severity CN = pre-fire CN + 15
(12)

The adjusted post-fire CN decreases the time of
concentration parameter, resulting in faster routing
of peak discharge through the affected basins.

DATA SOURCES AND PARAMETERS

A range of parameters are necessary for pre- and
post-fire model development. These parameters are
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often estimated using various methods (regional
topographic maps, geospatial data, local knowledge,
etc.) and implemented into models to predict peak
flow events. This study employs and advocates elec-
tronic databases that provide objective and readily
accessible tools for the acquisition of relevant model
parameters. A Digital Elevation Map (DEM) can be
utilized to determine contributing watershed area,
basin geophysical characteristics (slope, slope
aspect, or lengths), and stream features, and are
acquired from the USGS (http://viewer.nationalmap.
gov/viewer/). Land cover classification is used to
estimate pre-fire land cover and is provided by the
USGS (http:/www.mrlc.gov/finddata.php). National
Land Cover datasets (2001 and 2006) are 16-class
land cover products across the U.S. with 30-m spa-
tial resolution. The classification is developed from
the unsupervised Landsat Enhanced Thematic
Mapper+ (ETM+) satellite data. The USDA NRCS
provides a Web Soil Survey for the contiguous
U.S. (http://websoilsurvey.nrcs.usda.gov/app/HomePage.
htm). NRCS hydrologic soil groups are used to
establish a soil’s associated runoff CN to define
model infiltration parameters and the partition-
ing between incoming precipitation and surface
runoff.

Soil burn severity, required for post-fire CN
adjustment, is a representation of the boundary and
degree of burn within a wildfire (Key and Benson,
2004). Digital soil burn severity maps are typically
generated from remote-sensing products such as
Landsat and are validated in situ by BAER teams.
The validated maps are known as Burned Area
Reflectance Classification (BARC) maps and can be
acquired from a remote-sensing database developed
by the USDA Forest Service Remote Sensing Appli-
cations Center (RSAC) (http://www.fs.fed.us/eng/rsac/
baer/).

Mean annual precipitation in this study was
estimated from local climate and weather stations
accessible in the National Climate Data Center data-
base (http:/gis.ncdc.noaa.gov/map/viewer/#app=cdo).
All study models require representation of pre-
cipitation amount, frequency, intensity, or duration.
Alternatively, a design storm or a representation of
the variation of precipitation depth over time can be
used. The National Oceanic and Atmospheric
Administration (NOAA) and National Weather
Service (NWS) provide the NOAA Precipitation
Frequency Estimates at various durations (i.e., 5 min,
10 min, 24 h, weekly, etc.) and recurrence intervals
(i.e., 1, 2, 5, 10 years, etc.) for the U.S. with 90%
confidence intervals (searchable by location coordi-
nates at http:/hdsc.nws.noaa.gov/hdsc/pfds/index.
html).
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MODEL APPLICATION

Model evaluation was undertaken for eight basins
in the western U.S. for both pre- and post-fire condi-
tions; four of the basins have pre-fire observational
USGS peak discharge (Table 3). The study sites are
located within Arizona, California, Colorado, Mon-
tana, and Washington and provide a range of hydrocli-
matic conditions and varying soil burn severity
distribution (Tables 3 and 4). Basin sizes range from
0.03 to 57 km? (Table 3). Frye Creek in southern Ari-
zona was burned by the 2004 Gibson-Nuttall Complex.
Southern California sites include the 2003 Old Fire in
the San Bernardino Mountains (Devil Canyon) and
the 2009 Station Fire in the San Gabriel Mountains
(Arroyo Seco). The Northern California sites were
burned by the 2010 Bull Fire in southern Sequoia
(Bull #3) and the 2008 Butte Lightning Complex (Rock
Creek). Andrews Creek in Washington was burned by
the 2003 Fawn Peak Complex. Two smaller basins in
Colorado and Montana are analyzed in this study and
referred to by the name of the fire that completely
burned them (Fridley, 2001 and Hayman, 2002). The
Arroyo Seco is modeled both as lumped and distributed
systems with the HEC-HMS model to better represent
this larger basin. The three Arroyo Seco subbasins for
the distributed model are AS* — Little Bear, AS* —
Lower, and AS* — Colby (Table 4).

MODEL CALIBRATION

Pre-fire models were calibrated to improve peak
flow estimations where data were available. Only
models whose parameters allow for adjustment are
calibrated (TR-55 and HEC-HMS). Parameters
dependent on the CN are adjusted to better match
pre-fire observations using statistics and visual
inspection of hydrographs. Calibration efforts focus
primarily on matching peak discharge, with a second-
ary focus on discharge volume. The TR-55 is cali-
brated by adjusting the CN until the peak discharge
matches observations for each recurrence interval,
whereas the HEC-HMS model is calibrated by adjust-
ing the CN, I,, and lag time for selected pre-fire
storms (hydrographs) with 15-min USGS discharge
(Table 5). Adjusting the CN also alters the post-fire
T. (Equations 1 and 4) and affects the volume and
timing of discharge. The calibrated pre-fire models
are then adjusted for post-fire conditions using Equa-
tions 10-12.

We assess pre-fire model performance for both cali-
brated and uncalibrated models using flood frequency
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information from gaged watersheds. The Weibull
method is commonly used to analyze streamflow and
estimate expected frequency of flows based on the
assumption that peak discharge is evenly distributed
over a long period of time (Pramanik et al., 2010).
The generated discharge values for each recurrence
event are considered a reasonable approximation of
the associated probability density of discharge values
in a basin and allow comparison of modeled design
storm simulations to an “observed” storm frequency
(Clarke, 2002; Pramanik et al., 2010). In the current
study, a Weibull frequency distribution is generated
using the observed peak flow values for basins where
long-term peak discharge exists (Andrews Creek
[43-year record], Arroyo Seco [98-year record], Devil
Canyon [90-year record], and Frye Creek [33-year
record]).

To evaluate performance, we utilize two commonly
used metrics, root mean square error (RMSE), and
percent bias:

\/Z?I (Qmodel - Qobs)2

Root mean square error = ,

n
(13)

where n is the number of @, events for each model.

Qmodel ~ @obs +100% (14)

Percent bias =
Qobs

where @oqe1 18 the modeled discharge at a specific
recurrence interval, and Q. is the observed dis-
charge (either Weibull).

RESULTS AND DISCUSSION

Pre- and Post-Fire Peak Discharge

Models are applied to the eight study basins consid-
ering model and regional constraints (Table 6). Models
are initially run uncalibrated and for pre-fire condi-
tions and then adjusted for post-fire prediction using
modifiers or established methods. We also undertake
calibration for the Arroyo Seco and Devil Canyon
basins, where 15-min discharge is available, and use
the calibrated models to predict post-fire runoff.
Pre- and post-fire modeled peak discharge for 2-, 5-,
10-, 25-, and 50-year (Q2, Q5, Q10, Q25, and Q50)
recurrence intervals are normalized by basin area to
evaluate performance across all eight study basins.
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TABLE 4. Summary of % Runoff (RO) for USGS Linear Regression Post-Fire Modifiers, Rainfall Distribution Type,
Pre- and Post-Fire CN Model Parameters Used in the Wildcat5, TR-55, and HEC-HMS Models.

Pre-Fire Post-Fire

Watershed Percent RO Rainfall Distribution Hydrologic Soil Type CN T. (h) CN T. (h)
Andrews Creek 34 Type I B 59 5.51 64 4.85
Arroyo Seco 50 Type I C 72 5.14 81 3.94

AS — Little Bear N/A D 71 1.99 78 1.63

AS — Lower N/A C 73 4.33 81 3.41

AS — Colby N/A C 73 2.69 80 2.19
Devil Canyon 121 Type I C 73 2.09 86 1.39
Frye Creek 83 Type 11 B 58 2.61 66 2.13
Bull #3 147 Type IA D 82 0.49 90 0.37
Rock Creek 66 Type IA D 79 0.33 85 0.27
Fridley 100 Type 1T B 74 0.17 89 0.11
Hayman 20 Type II D 79 0.14 94 0.08

Note: AS indicates one of three subbasins of the Arroyo Seco used in the distributed models.

TABLE 5. Uncalibrated (Uncal) and Calibrated (Cal) Parameters
for Arroyo Seco Lumped and Distributed Models (the distributed
model consists of three subbasins denoted with AS). Storm 1
and Storm 2 identify the storms utilized in this study.

TR-55 Type CN Ty, (h) T, (h) I, (cm)

Lumped Uncal 72 — 5.14 —
Cal 51 — 6.80 —

HEC-HMS Type CN Tp(th) T.(h) I,(cm)

Lumped Uncal 72 6.17 10.28 0.99
Cal storm 1  45.5 3.17 5.28 10.39
Cal storm 2 35.25 5.25 8.75 10.80

AS — Colby Uncal 73 1.61 2.69 1.88
Cal storm 1 21 2.08 3.47 8.13
Cal storm 2 21 2.33 3.89 7.87
AS — Little Bear Uncal 71 1.19 1.99 2.08
Cal storm 1 21 2.67 4.44 7.62
Cal storm 2 21 1.67 2.78 7.87
AS — Lower Uncal 73 2.59 4.32 1.88
Cal storm 1 21 6.67 11.11 8.13
Cal storm 2 21 3.75 6.25 7.87

Uncalibrated model predictions across the sites
(peak discharge/unit area) are highly variable under
both pre- and post-fire conditions (Figures 1 and 2).
For pre-fire conditions, the models underpredict the
estimated peak discharge for Q2-Q10 at Andrew
Creek (Figure la) and improve for the larger events
in this basin. Pre-fire CN models (TR-55 and HEC-
HMS) at Arroyo Seco (Figure 1c¢) and Devil Canyon
(Figure le) overpredict for each peak discharge event.
The USGS model also overpredicts at the Q25 and
Q50 events. However, the RCS model performs well
across the events when compared to the observed
(Weibull estimate) peak discharge. Pre-fire model
predictions at Frye Creek (Figure 1g) have the best
consistency when compared to the observed peak dis-
charge. Pre-fire models at the Bull #3 (Figure 2a),
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Rock (Figure 2c), Fridley (Figure 2e), and Hayman
(Figure 2g) sites show increasing variability between
predictions at each recurrence interval, with more
spread observed for the larger peak discharge events.

The uncalibrated post-fire models show the most
discrepancy in peak discharge predictions (Figures 1
and 2). In general, the smaller and steeper basins
(Bull #3, Fridley, and Rock Creek) generate more dis-
charge per unit area (Figure 2). Andrews Creek is
the largest basin with the least amount of burned
area relative to all study sites and produces the least
amount of discharge per unit area (Figures la and
1b). The RCS peak discharge predictions are based on
in situ observational data, reducing the uncertainty
in post-fire values. The RCS predictions at the lower
recurrence intervals (Q2-Q10) correspond well to the
USGS regression model (Figures 1d-1f). The USGS
regression performs well in the lower recurrence
intervals pre-fire providing more confidence in post-
fire prediction. The Wildcats generally has simula-
tions in the middle of the ensemble of predictions,
suggesting better overall performance relative to the
other models (Figures 1f and 2d-2f). At Fridley and
Hayman, the TR-55 is highly incongruous with the
other models (Figures 2f and 2h). At Rock Creek, all
the CN models are inconsistent with the USGS
regression model (Figure 2d). The inconsistency
between model predictions, especially notable in the
smaller watersheds, contributes to the uncertainty in
model prediction and highlights the discretion neces-
sary for model selection.

Curve Number Model Parameter Sensitivity
Simulated peak discharge (per unit area) appears

strongly influenced by watershed characteristics but
shows significant variability between models
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TABLE 6. Available Pre- and Post-Fire Models for Each Basin, Where ! Indicates Observational Data
that Are Available for Pre-Fire Model Calibrations and * Indicates Calibrated Pre-Fire Models
and Post-Fire Models Adjusted from the Calibrated Pre-Fire Models.

Model RCS USGS Linear Regression TR-55 Wildcat 5 HEC-HMS
Andrews Creek! — Pre, Post Pre, Post — Pre, Post
Arroyo Seco® Pre, Post Pre, Post Pre, Post — Pre, Post
Pre*, Post* Pre*, Post™
Devil Canyon? Pre, Post Pre, Post Pre, Post — Pre, Post
Pre*, Post* Pre*, Post*
Frye Creek! — Pre, Post Pre, Post Pre, Post Pre, Post
Bull #3 — Pre, Post Pre, Post Pre, Post Pre, Post
Rock Creek — Pre, Post Pre, Post Pre, Post Pre, Post
Fridley — Pre, Post Pre, Post Pre, Post Pre, Post
Hayman — Pre, Post Pre, Post Pre, Post Pre, Post
B i N >< @® Obs
04f @ 104} b % + RCS
® 8 2 a A USGS
X
2f o ® 4 g {02 <« & B ¢ WCs
X (] A g (] 0O TR-55
L& o © ol—0 X HEC
10 10 2
c) Q d) 9
B A R A
5 s 2 A 5 9] + *+
2 a2 ¢ *° i & *
= — 20 '
™~
g e) f) R
] = 9]
g 10 & 10 &
—
&
= X - o . 4 $ +
®
9 | o} ® 5
1 g g | 1 x 8 2 z
5 8 2 o g ¢ ¢

=
Q2 Q5 Q10 Q25 Q50

Pre-fire Event

Q2 Q5 Q10 Q25 Q50

Post-fire Event

FIGURE 1. Variability of Modeled Peak Discharge per Unit Area Pre- and Post-Fire for Study Basins with Observational Data:
Andrews Creek (a and b), Arroyo Seco (c and d), Devil Canyon (e and f), and Frye Creek (g and h).

(Figure 3). The TR-55 is highly sensitive to model
parameters. Slope (Figure 3b), soil type (Figure 3e),
and CN (Figure 3f) have the most influence on pre-
fire model CN predictions. In the CN models, slope
influences the time of concentration; with steeper
slopes equating to smaller residence time within the
basin. The shorter time of concentration values pro-
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duce more immediate discharge, especially under
post-fire conditions. Under post-fire conditions, the
CN (Figure 3m) and percent of the basin burned
(Figure 30) have significant influence on modeled dis-
charge. Rainfall distribution, determined by site loca-
tion and used as input to the USGS and CN models,
also influences the predicted discharge. Some of the
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FIGURE 2. Variability of Modeled Peak Discharge per Unit Area Pre- and Post-Fire for Study Basins without
Observational Data: Bull #3 (a and b), Rock Creek (c and d), Fridley (e and f), and Hayman (g and h).

California watersheds are on the boundary between
NRCS Types I and IA rainfall distribution types. The
Type IA rainfall distribution (Bull #3) results in a lar-
ger runoff response. This is extremely pronounced in
the Q25, Q50 during pre-fire conditions, and for all
post-fire events (Figures le and 1f). Similarly, the
CN significantly influences the overall volume of pre-
dicted runoff. We note that both rainfall type and CN
are relatively subjective and contribute to model
uncertainty due to the inconsistencies in CN acquisi-
tion and rainfall distribution type.

Soil classification appears to have more influence
on post-fire discharge (Figure 31). However, this is
mostly noted in the HEC model where interactions
with other routing parameters may be influencing
post-fire discharge. The California and Hayman sites
are generally characterized by soil types C (Arroyo
Seco and Devil Canyon) and D (Bull Fire, Hayman,
and Rock Creek), which generate moderate and high
runoff potential, respectively. In both soil groups, C
and D, water transmission is restricted. Fridley and
Frye Creek are characterized by soil type B, defined
as moderately low runoff potential and unimpeded
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water transmission. Under immediate post-fire condi-
tions, most surface soils are hydrophobic to some
degree which contributes to increased runoff. Break-
down of the hydrophobic layer is dependent on
amount and intensity of rainfall (De Bano, 2000) and
can be represented by CN alteration. Post-fire CN
models are sensitive to soil parameters and can be
modified (Higginson and Jarnecke, 2007; Cydzik and
Hogue, 2009; Chen et al., 2013) to reflect an increase
in immediate surface runoff and a decrease in infil-
tration.

Calibration

The lumped and distributed Arroyo Seco design for
the HEC-HMS model result in distinct differences
in both wuncalibrated and calibrated parameters
(Table 5). The CN significantly decreases and the ini-
tial abstractions significantly increase in both the
calibrated lumped and distributed models, as a result
of having to lower the water volume to match basin
rainfall-runoff response. The alteration in CN and

JOURNAL oF THE AMERICAN WATER RESOURCES ASSOCIATION



EvaLuaTing Pre- anD Post-FirRe Peak DiscHARGE PrepicTions AcRoss WESTERN U.S. WATERSHEDS

Pre-Fire Discharge

o
(=]

- | ¥ b)
5 15
E 10 o O
25 @ g 8 2 O
= ¥ g[8 9s
0—= Q_.A
Type I Type IAType 11 0 20 40
5 Storm Type Slope [%]
= |9 d)
5 15
w D D
E 10 ]
5 5 2 % o O
o A A ®
0 —=
0 20 40 F/S S/F SH F
20 —Basin Area [km?] Land Cover
= |9 f
g 15
E 10 0 o
o E e *g
0 X
B C D 60 80 100
Soil Type Pre-fire CN
= . g) A USGS
E 15 ¢ WCs
% - O TR-55
10 - X HEC
-
5
| T
0 = &

0 2 4 6
Pre-fire Tc [hrs]

Qpk [cms/km?] Qpk [cms/km?]

Qpk [cms/kmz]

Post-Fire Discharge

o
(=]

— h) i)
515 X X X
a X Y4 X X
5 10 5 o § o
A x 0O
5506 8 Fllagde®
oLe—¢ & | ¢ o
Type I Type IAType 11 0 20 40
50 Storm Type Slope [%]
)] k)
151 % X X
X X X
10 0 5 0
X (]
5 § ©
?g 2 R 4 0
oL 2 ¢ ® ¥
0 20 40 F/S SF SH F
- Basin Area [km2] Land Cover
) m)
15 X X X X
X 'Y »
10 § o XD
(]
519 e i o‘fo
e
C D 60 80 100
- Soil Type Post-fire CN
n) 0)
151 X X
x X X X
10 o y g y
siF e o € 5
K A 1 e L
0 2 4 6 60 80 100

Post-fire Tc [hrs] % Burned

FIGURE 3. Pre- and Post-Fire Peak Discharge per Unit Area with Respect to Model Variables. Storm Type (a and b) is from the NRCS
Rainfall Distribution Types. Land Cover (d and k) is from the USGS National Land Cover datasets (2001 and 2006), where “F/S” is
predominantly forest and shrubland, “S/F” is predominantly shrubland and forest, “S/H” is predominantly shrubland and herbaceous, and
“F” is predominantly forest. The hydrologic Soil Type (e and 1) is from the USDA Natural Resources Conservation Services Web Soil Survey.

initial abstraction reflects sensitivity to soil type and
land cover, which govern the transmission of runoff
into the soil.

The lag time for the lumped Arroyo Seco and
Lower Arroyo Seco subbasin are also lowered to route
water more quickly from the upper parts of the basin
to the outlet, which more appropriately accounts for
the steepness of the watershed (Table 5). The lumped
and distributed simulations for two observed storms
in the Arroyo Seco (Storm 1: 24-28 December 2003
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and Storm 2: 19-26 October 2004) show significant
improvement after calibration (Figures 4b and 4d
[uncalibrated] vs. Figures 4a and 4c [calibrated]). The
observed discharge is greatly overestimated by the
uncalibrated lumped and wuncalibrated distributed
hydrographs for each storm (Figures 4a and 4c). The
calibrated distributed model is better able to capture
the peak and volume of the observed storm than the
lumped model. The October 2004 storm, which has a
dual peak, had simulations that did not adequately
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FIGURE 4. Uncalibrated (a and c) and Calibrated (b and d) HEC-HMS Lumped and Distributed Hydrographs for Two Pre-Fire Observed
Storms in the Arroyo Seco, 25-28 December 2003 (Storm 1) and 20-26 October 2004 (Storm 2). Two Validation Storms for Arroyo Seco HEC-
HMS lumped and distributed models (e and f) for 28 February-3 March 2006 (Val Storm 1) and 6-10 February 2009 (Val Storm 2).

match the observed discharge (Figure 4d). The second
pulse of precipitation is difficult to capture, and both
models overpredict discharge response. Overall, the
distributed calibrated model performs better than the
lumped calibrated model (Figure 4d).

The final calibrated parameters are next evaluated
on two independent storm events (Figures 4e and 4f).
Simulations generally result in adequate performance
for the lumped and distributed models for 28 Febru-
ary-3 March 2006 (Val Storm 1) (Figure 4e). A less
successful validation is highlighted for a storm occur-
ring 6-11 February 2009 (Val Storm 2) (Figure 4f).
Both storms indicate that both TR-55 and HEC-HMS
are sensitive to precipitation volumes and intensity,
which is influenced by the initial abstraction parame-
ter in the model. Overall, the distributed model per-
forms better than the lumped model, demonstrating
the influence of including parameter variability
throughout the basin. The calibrated models are used
to predict pre- and post-fire discharge for Arroyo Seco
(Figures 5a and 5b) and Devil Canyon (Figures 5c
and 5d). For pre-fire, the calibrated peak discharge is
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significantly less than the uncalibrated discharge
(Figures 5a-5c¢). The calibrated models also generally
perform better for Devil Canyon (Figure 5c¢) than in
the Arroyo Seco (Figure 5a). Uncalibrated models
predict significantly more peak discharge post-fire,
and calibrated TR-55 and HEC-HMS models are more
consistent with the RCS and USGS methods (Fig-
ures 5b-5d).

Model Uncertainty and Errors

Model errors are highly variable across all basins
and fire sites (Figure 6). Study models applied to
Andrews Creek generally undersimulate (—435 to
—38% bias) (Figure 6a). The uncalibrated Q25 HEC-
HMS (—15%), uncalibrated Q50 HEC-HMS (14%), and
Q50 USGS (—22%) are better and have lower percent
bias values (Figure 6a). The uncalibrated TR-55 and
HEC-HMS models at the Arroyo Seco site have large
positive bias, ranging from 133 to 611% (Figure 6b).
The RCS method undersimulates at the Arroyo Seco
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FIGURE 5. Arroyo Seco (a and b) and Devil Canyon (c and d) Pre- and Post-Fire Estimated Peak Discharge per Unit Area for Applicable
Models (RCS, USGS, TR-55, and HEC). For these basins, TR-55 and HEC include uncalibrated (u) or calibrated (¢) models.

(=52 to —34%), while bias in the USGS model ranges
from —48 to 94%, showing overprediction in the higher
recurrence intervals (Figure 6b). The calibrated TR-55
at the Arroyo Seco shows some of the best perfor-
mance, with percent bias ranging from —7 to 26%
across all events. The lumped and distributed cali-
brated HEC-HMS models have larger negative bias,
ranging from —82 to —7% (Figure 6b). Models at Devil
Canyon have the largest spread of percent bias values
primarily due to the uncalibrated TR-55 and HEC-
HMS predictions (over 1000% bias) (Figure 6¢). The
RCS results in bias values from 25 to 88%, where Q25
and Q50 have higher positive bias. The USGS method
has lower bias for only the Q2 event (Figure 6¢). The
calibrated TR-55 and HEC-HMS models significantly
reduce percent bias for all discharge recurrence inter-
vals in Devil Canyon, especially the Q2 through Q25
events (Figure 6¢). Models applied to Frye Creek gen-
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erally show negative bias (Figure 6d), with the USGS
ranging from —79 to 28%, and showing the best perfor-
mance at Q5 (Figure 6d). The Wildcat5 shows the
tightest percent bias range (—33 to —5%) for all peak
discharge events, even though it is an uncalibrated
model (Figure 6d).

Where observational data are available, the mean
RMSE for each applicable model for Andrews Creek,
Arroyo Seco, Devil Canyon, and Frye Creek is com-
puted. The aggregate RMSE value highlights the
overall tendency of models to under or overpredict
peak discharge across the range of recurrence inter-
vals (Figure 7). The uncalibrated TR-55 and HEC-
HMS have significantly larger error than all available
models at each site (Figure 7). The TR-55 generally
has a lower model error than the HEC-HMS
(Figures 7b-7d). Andrews Creek and Frye Creek have
the lowest RMSE across all models (Figures 7a-7d).
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Discharge Events for Available Pre-Fire Models with Observational Data, where “u” Are Uncalibrated,
“c” Are Calibrated, “1” Are Lumped, and “d” Are Distributed Models.
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FIGURE 8. Pre- and Post-Fire (a and b) Mean Peak Discharge per
Unit Area for All Models by Region (Arizona (AZ), Southern
California (S. CA), Northern California (N. CA), Colorado
(CO), Montana (MT), and Washington (WA)).

The mean of all the peak discharge predictions at
each site by region highlights overall consistency of
model performance (Figure 8). The TR-55 model
shows the least consistent performance relative to
other applicable models, especially in southern
California, northern California, Colorado, and Mon-
tana (Figures 8a and 8b). The highest consistency
between the pre- and post-fire model predictions
occurs for sites in Arizona and Washington (Fig-
ures 8a and 8b). The largest discrepancy is observed
for northern California and for post-fire southern Cal-
ifornia, Colorado, and Montana (Figure 8). There is
less agreement between post-fire models for southern
California, northern California, Colorado, and Mon-
tana (Figure 8b).

CONCLUSIONS

The current study involves systematic evaluation of
a range of models commonly used in post-fire hydro-
logic assessments, especially within the operational
community. We advocate the implementation of stan-
dardized methods to acquire model parameters and
transferability of model results from this study to other
regions and fires should be used with reservation. In
general, results show that discharge estimates are
highly variable for the studied watersheds, heavily
influenced by climatology (location), geophysical pro-
perties, and soil burn severity, and that no single
model appears suitable across the range of systems
studied. Key insight on model performance is summa-
rized as follows:
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1. Estimated peak discharge is highly variable
depending on the model and parameter selection
within the system.

2. The RCS method performs well as it is based on
observational data, but RCS has limited regional
applicability (only available for southern Califor-
nia). The RCS is also a static model that is not
adaptable to changing geomorphology and cli-
mate conditions.

3. The USGS linear regression model includes a
subjective modifier used to adjust toward post-
fire peak runoff (requires percent of runoff
increase a priori), adding significant uncertainty
in discharge estimates. The regional regression
equations are broad and not fine tuned for
specific watersheds, resulting in more variable
performance.

4. The Wildcatb seems to perform the best overall
given current methods to acquire CN and without
calibration, but application is limited by basin size.

5. The uncalibrated TR-55 tends to overestimate
peak discharge events for all watersheds, and
has more uncertainty during low-flow events.

6. The HEC-HMS model has a moderate learning
curve due to its complex GUI and high number of
required parameters, but provides good results
after calibration. In addition, the HEC-HMS pro-
vides more flexibility for watershed setup (i.e., loss
methods, runoff transformations, routing) with
user-defined model selections and parameter input.

7. The utilized CN models are especially sensitive to
CN; however, a standardized method to acquire
and calibrate these models currently does not exist,
increasing uncertainty in model results.

For CN models (i.e., TR-55 and HEC-HMS), we
recommend that a regional basin can be used to cali-
brate and transfer model parameters to the basin of
interest. If sufficient time and data are available to
undertake calibration, we recommend the use of the
HEC-HMS. The model provides the most customiz-
able system, which if used properly, can best reflect
watershed behaviors and properties. However, if cali-
bration data or adequate time is not available, the
Wildcat5 is suitable for watersheds that meet the
basin size constraints. Proper selection of a model
that performs well for the region of study, and can be
calibrated, will ultimately improve confidence in post-
fire flow predictions, reducing management costs and
improving regional resource allocation.
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